
 

 
 

Faculty of Engineering and Technology 

Master of Software Engineering 

 

 

Master Thesis 

 

 

Model-Based Approach for Supporting Quick Caching in iOS Platform. 

 

 

 

 

Author 

Student Name: Ahd Radwan 

 

 

 

 

Supervisor 

Dr. Samer Zein 

 

 

 

 

 

8/6/2020



 

 
Faculty of Engineering and Technology 

Master of Software Engineering 

 

Master Thesis 

 

Model-Based Approach for Supporting Quick Caching in iOS Platform. 

 

جذامنلا ىلع ادامتعا   iOS ماظن ىلع تانایبلا نیزخت عیرستل جھنم   

 

 

Author 

Student Name: Ahd Radwan 

 

 

Supervisor 

Dr. Samer Zein 
 
 
 

Committee: 
Dr. Samer Zein 

Dr. Sobhi Ahmed 
Dr. Mamoun Nawahdah 

 
 

This thesis was submitted in partial fulfillment of the requirements for the Master’s 
Degree in software engineering from the Faculty of Graduate Studies, at Birzeit 

University, Palestine 
 

8/6/20201



 

 

Model-Based Approach for Supporting Quick Caching in iOS Platform. 

By: Ahd Radwan 

 

Approved by the thesis committee: 

____________________________________________ 

  

Dr. Samer Zein, Birzeit University 

____________________________________________ 

  

Dr. Sobhi Ahmed, Birzeit University 

____________________________________________ 

 

Dr. Mamoun Nawahdah, Birzeit University 

____________________________________________ 

  

Date approved: 

____________________________________________ 8/6/2020

Tec
Pencil

Tec
Pencil



 

III 

Abstract 

Mobile applications have become widely adopted, and the need for fast 

development tools has significantly increased.  iOS is one of the most popular 

mobile platforms, however it received much less research achievement compared 

to Android platform. In addition, mobile application development is a tedious 

process and requires special experience and skills; not to mention that most of the 

mobile application developers are novice developers or come from non-computing 

backgrounds and so they don’t have these skills.  Moreover, most mobile apps need 

to persist their data locally, while persisting iOS data using existing tools and 

framework is a tedious task for developers. Therefore, there is an actual need for 

an automation tool that helps developers to persist their data easily and quickly.  

This problem can be solved using Model based development techniques, by 

abstracting the development details and keeping developers away from the tedious 

coding  tasks.  

 

This thesis is presenting a model based approach that will help developers 

persisting their iOS application’s data locally. Using Model-To-Model and Model-

To-Code transformation, also by leveraging the Domain Specific Visual Language 

(DSVL) and Domain Specific Textual Language (DSTL) it will create the iOS data 

persistence components. This approach has been evaluated using a case study and 

a user evaluation conducted on a group of developers with different levels of 

experiences. The user evaluation has provided positive user acceptance feedback.   



 

IV 

 صخلملا

 اھریوطت تاودلأ ةجاحلا ظوحلم لكشب تدادزاو ً،اراشتنا رثكأ ةلومحملا فتاوھلا تاقیبطت تحبصأ

 ةیثحب تازاجنإب تیظح اھنأ لاأ ،اعویش ةلومحملا ةزھجلأا تاصنم رثكأ دحأ iOS ةصنم ربتعت .عیرسلا

 ةربخ بلطتتو ةقاش ةیلمع لومحملا فتاھلا تاقیبطت ریوطت دعی .Android ةصنمبً ةنراقم ریثكب لقأ

 نوئدتبم نوروطم مھ ةلومحملا ةزھجلأا تاقیبطت يروطم نم ریثكلا نأ نع كیھان ؛ةصاخ تاراھمو

 مظعم نأ امك .ةبولطملا تاراھملا هذھ نوكلتمی لا يلاتلابو ةیبوساح ریغ ىرخا تایفلخ نم نوتأی وأ

 تانایب ظفح نأ نیح يف ،ةزھجلأا ىلعً ایلحم اھتانیب نیزخت ىلإ جاتحت ةلومحملا ةزھجلأا تاقیبطت

 ةسام ةجاح لكش ام .نیروطملل ةقاش ةمھم دعی يلاحلا نیزختلا رطأو تاودأ مادختساب iOS تاقیبطت

 ةلكشملا هذھ لح نكمی .ةعرسو ةلوھسب مھتاقیبطت تانایبب ظافتحلاا ىلع نیروطملا دعاست ةتمتأ ةادلأ

 نیروطملا لزعو ةیجمربلا لیصافتلا راصتخا للاخ نم ،جذومنلا ىلع ةمئاقلا ریوطتلا تاینقت مادختساب

 .ةرجضملا ةیجمربلا ماھملا نع

 تانایبب ظافتحلاا ىلع نیروطملا دعاسی نأ ھنأش نم جذومنلا ىلع امًئاق اجًھن ةحورطلأا هذھ مدقت

 جذومن ىلإ جذومن لیوحت ةینقت مادختساب .ةلومحملا ةزھجلأا ىلع اًیلحم مھب ةصاخلا iOS تاقیبطت

 قاطنلاب نیتصاخلا ةیصنلاو ةیئرملا نیتغللا نم ةدافتسلاا للاخ نمو ،زمر ىلإ جذومن لیوحتو

)DSTL, DSVL(، تانایب نیزخت تانوكم ءاشنإ متیس iOS. ةلاح ةسارد مادختساب جھنلا اذھ مییقت مت 

 ةفلتخم تایوتسم نوكلمی نیروطم نم ةعومجم ىلع هؤارجإ مت يذلا نیمدختسملا مییقت ىلإ ةفاضلإاب

 جھنلل نیمدختسملا لوبق يف ةیباجیإ لعف دودر ةساردلا جئاتن تنیب دقو .ةربخلا نم

  .حورطملا



 

V 

Acknowledgements 
My thanks and appreciation to my Supervisor Dr. Samer Zein, I truly appreciate 

his help and supportive encouragement throughout the research time. I would like 

to thank him for his effort and time; it was a pleasure to work with him. 
I am grateful for my family; Mom, Dad, my sisters and my brother to their 

encouragements and grate support. 

  
  



 

VI 

Table of Contents: 
 

Abstract ............................................................................................................................. III 

صخلملا  .............................................................................................................................. IV 

List of Tables ...................................................................................................................... X 

List of Figures .................................................................................................................. XI 

Chapter 1 Introduction .................................................................................................... 1 

1.1 Research Problem and Motivation .............................................................................. 2 

1.2 Aim and Objectives ....................................................................................................... 2 

1.3 Main Contribution ........................................................................................................ 3 

1.4 Solution Approach ......................................................................................................... 3 

1.5 Research Questions ....................................................................................................... 3 

1.6 Overview of this report ................................................................................................. 4 

Chapter 2 Background and Literature Review .............................................................. 5 

2.1 Introduction ................................................................................................................... 5 

2.2 Literature Review Method ........................................................................................... 5 

2.3 Background .................................................................................................................... 6 
2.3.1 iOS Development ................................................................................................................ 6 

2.3.2 iOS architecture ................................................................................................................... 6 

2.3.3 iOS application life cycle .................................................................................................... 7 

2.3.4 iOS Data Persistence ........................................................................................................... 9 

2.4 Related work ................................................................................................................ 17 
2.4.1 Model driven development ................................................................................................ 17 

2.4.2 Mobile development Automation ...................................................................................... 25 

2.4.3 Time to market. ................................................................................................................. 27 

2.4.4 Mobile data persistence ..................................................................................................... 28 

2.4.5 Model based automatic generation for REST APIs .......................................................... 30 

2.5 Summary ...................................................................................................................... 32 

 



 

VII 

Chapter 3 Research Methodology ................................................................................. 34 

3.1 Solution approach ....................................................................................................... 34 

3.2 How tool works ............................................................................................................ 35 

3.3 Main Components ....................................................................................................... 38 

3.4 Framework design ....................................................................................................... 39 

Chapter 5 Implementation ............................................................................................ 41 

5.1 Tool architecture ......................................................................................................... 41 

5.2 Tool Design ................................................................................................................... 42 

5.3 Model Transformation Process .................................................................................. 47 
5.3.1 Query Modeling process. .................................................................................................. 48 

5.3.2 Schema Modeling process. ................................................................................................ 50 

5.4 Generated Code architecture ..................................................................................... 50 

5.5 Schema validation procedure ..................................................................................... 54 

5.6 Code generation algorithms. ...................................................................................... 54 
5.6.1 Core data generation algorithm. ........................................................................................ 54 

5.6.2 Custom query generation algorithm. ................................................................................. 56 

5.7 Tool’s Usecase Diagram. ............................................................................................. 56 

5.8 DSVL & DSTL Modeling language ........................................................................... 58 
5.8.1 Domain specific Visual language (DSVL) ........................................................................ 58 

5.8.2 Domain specific Textual language (DSTL) ...................................................................... 59 

5.9 How to use .................................................................................................................... 60 
5.9.1 Generating data components ............................................................................................. 63 

5.9.2 Generating custom data fetch query .................................................................................. 64 

Chapter 6 Experimental design .................................................................................... 68 

6.1 Participants’ background ........................................................................................... 68 

6.2 Evaluation Setup ......................................................................................................... 69 

6.3 Evaluation Procedure ................................................................................................. 70 
6.3.1 Environment setup ............................................................................................................. 70 

6.3.2 Generate data persistence files .......................................................................................... 71 



 

VIII 

6.3.3 Use the generated code and build a custom query ............................................................ 71 

6.4 Evaluation Metrics ...................................................................................................... 71 
6.4.1 Developers experience ...................................................................................................... 71 

6.4.2 Time to use ........................................................................................................................ 72 

6.4.3 Ease of Learning ................................................................................................................ 72 

6.4.4 User Acceptance ................................................................................................................ 73 

Chapter 7 Results and Discussion ................................................................................ 74 

7.1 Participants experience ............................................................................................... 74 

7.2 Time to use ................................................................................................................... 77 

7.3 Ease of Learning .......................................................................................................... 78 
7.3.1 Usability questions ............................................................................................................ 80 

7.3.2 Failures, mistakes and errors ............................................................................................. 81 

7.4 User Acceptance .......................................................................................................... 82 

7.5 Participants achievement ............................................................................................ 82 

7.6 Comparison with existing framework ....................................................................... 85 

7.7 Comparison with Related work ................................................................................. 86 

7.8 Threats to validity ....................................................................................................... 88 

Chapter 8 Conclusion and Future Work ...................................................................... 89 

8.1 Conclusion .................................................................................................................... 89 

8.2 Future work ................................................................................................................. 90 

References ........................................................................................................................ 91 

Appendix A: Questionnaire ............................................................................................. 99 

PART 1: Participants background ......................................................................................... 99 

PART 2: Tool evaluation ....................................................................................................... 101 

Appendix B: Generated code for sample project using CDGenerator ......................... 103 

1. CityModel class code ..................................................................................................... 103 

2. CountryModel Class Code ............................................................................................ 105 

3. CoreDataManager file code .......................................................................................... 107 



 

IX 

4. CDQueryManager file code .......................................................................................... 110 

 

  



 

X 

List of Tables 

 

Table 4-1: Custom query visual language 59 

Table 6-1: Participants’ answers for developers experience questions 74 

Table 6-2: Participants tasks and time to do them 77 

Table 6-3: Participants’ answers questionnaire’s part 2 questions 80

  

  



 

XI 

List of Figures 

Figure 2-1: Apple iOS Architecture 7 

Figure: 2-2: iOS application state changes 8 

Figure 2-3: Core Data Stack 11 

Figure 2-4: KVC example 13 

Figure 2-5: Using perform(_:) method example 14 

Figure 2-6: TOM framework: conceptual architecture 24 

Figure 2-7: Task of Fischer, M’s approach 31 

Figure 3-1: A high level representation of the solution approach 35 

Figure 3-2: Main components of the solution's approach 39 

Figure 4-1: CDGenerator Architecture   42 

Figure 4-2: CDGenerator’s class diagram 47 

Figure 4-3: Generated code architecture 53 

Figure 4-4: Tool’s use case Diagram 57 

Figure 4-5: Core data example’s data schema 61 

Figure 4-6: CDGenerator home screen 62 

Figure 4-7: Generated files for the countries example 63 

Figure 4-8: Part of the generated CityModel class 64 

Figure 4-9: Specify search city query 66 

Figure 4-10: Generated code for search city query function 67 

Figure 6-1: Participants’ experience graphs 75 

Figure 6-2: Screenshots of a participant app 84



 

1 

Chapter 1 Introduction 

Smartphones have become widely adopted and mobile application development has 

exploded [2]. The number of mobile phone users reached 6.8 billion by the end of 2019 

and the statistics shows that it is forecasted to reach 7.26 billion by 2023 [53]. Also, the 

number o`f smartphone users surpassed three billion users by 2020 [55]. This expansion 

is due to the advancement of mobile hardware parts including processors, memories and 

sensors [54]. There are millions of mobile apps through the various marketplaces and 

app stores including iOS, Android and Windows phone stores. Apple’s app store is the 

second largest store for mobile applications, in the first quarter of 2020 it reached 1.85 

million apps while in the first place was the Android store with 2.56 million apps [66].  

 

Although iOS is one of the most popular platforms with a large share in the mobile 

market; it has received much less research achievement compared to Android platform 

[64]. The mobile apps development process is a tedious task, it requires a lot of work to 

be done and a lot of code to be written with tools that poorly support high level 

abstractions [2].  Moreover, most mobile apps need to save their data locally using 

mobile’s database or caching backend data locally [31]. It is true that several 

frameworks support local data persistence for iOS applications such as SQLite database 

and CoreData framework. However, developing with these frameworks can be 

intimidating even for experienced developers [42]. Meanwhile, many mobile developers 

are novice, non-computing or students with less experience and skills needed [31]. 

 

Model-based techniques abstract the development details, simplify the development 

process and improve developers’ productivity [2]. Thus, employing model-based 

techniques on a tedious development task would help developers finish their tasks easily 

without the need to exhaust themselves with the development details. 

 

This thesis presents a new model-based approach and a tool support that enables quick 

caching for iOS mobile applications’ data for developers. This approach leverages 

Domain Specific Visual Language (DSVL) and Domain Specific Textual Language 



 

2 

(DSTL) techniques, to abstract certain characteristics of iOS applications using high 

level visual and textual notations.  

1.1 Research Problem and Motivation 

 

The exponential growth of mobile apps with speed of more than 1000 apps per day 

[21] has put the mobile development teams under a constantly fierce competition. 

Which puts the developers under stress and entails their need to finish their tasks 

rapidly. Moreover, many mobile developers are novice, non-computing or students 

with less experience and skills needed [31]. Thus, developers need tools and 

frameworks to help them finish their tasks easily and rapidly with few effort and 

skills. Such support can be achieved by applying Model-based techniques which 

abstract the development details of a tedious task to a higher abstraction level, 

making the development process easier and improves developers’ productivity [2].  

In addition, most mobile apps need to persist their data locally, however presenting 

data using native and existing tools such as SQLite Database and Core Data 

framework is a tedious task even for experienced developers [42]. Accordingly, 

applying model based techniques with a tool that enables quick caching for mobile 

apps, especially iOS platform would help iOS developers finish their tasks easily. 

1.2 Aim and Objectives 

The aim of this thesis is to develop a model based approach using Domain Specific 

Visual Language (DSVL) and Domain Specific Textual Language (DSTL) to 

generate data persistence components for iOS applications. 

The main objectives are: 

1. Building the model based development tool that automatically generates 

iOS app’s data persistence components and creates data queries based on a 

highly abstract representation of data schema and a Domain specific Visual 

and Textual modeling languages DSVL and DSTL.  



 

3 

2. Applying the Domain specific Visual language (DSVL) and Domain 

specific Textual Language (DSTL) on iOS code generation. 

3. Evaluating the presented approach using a case study that measures its 

effectiveness, efficiency, and usability.  In addition, measuring its user 

acceptance by doing a user evaluation study. 

1.3  Main Contribution 

 

The main contribution of this thesis is helping developers to persist their application 

data locally when developing iOS applications using model based techniques. They 

only need to provide their data schema using Xcode data schema editor, then the 

system will automatically generate the application data persistence components and 

provides a user interface that leverages the   Domain Specific Visual Language 

(DSVL) and Domain Specific Textual Language (DSTL) allowing customization 

and automatic generation of data fetch queries.  

1.4 Solution Approach 

 

This thesis provides a model based approach that automatically generates the iOS 

application’s data persistence components as well as models, models’ mappers, 

shared managers, and data persistence queries’ interfaces from a provided data 

schema. It also leverages the Domain Specific Visual Language (DSVL) and 

Domain Specific Textual Language (DSTL) to provide a customizable way for 

automatically generated data fetch queries. This approach aims to assist developers 

who don’t have advanced computing skills. This tool has been evaluated using a 

set of developers with different levels of experience and skills to measure its 

effectiveness, efficiency and user acceptance. 

1.5   Research Questions 

Thesis’s proposed research questions are as follows: 



 

4 

1. RQ1 - How does applying model based development and DSVL and 

DSTL model-based techniques help rapid development for iOS platform? 

2. RQ2 - What is the impact of such an approach on iOS developers in terms 

of time and effort? 

3. RQ3 - How such an approach can be evaluated to measure above 

development criteria? 

1.6 Overview of this report 

 

The remaining chapters of this report are organized as follows: 

• Chapter 2: Covers the background of the research area, iOS operating 

system, iOS development, iOS data persistence, and Model Driven 

Engineering (MDE). It also summarizes the literature review of the related 

work. 

• Chapter 3: Introduces the research methodology, solution approach, 

implementation, and evaluation of the presented approach.  

• Chapter 4: Describes the solution approach implementation details, 

implementing the tool’s architecture, generated code architecture, tool’s 

design and using examples. 

• Chapter 5: Presents the evaluation applied to evaluate the solution approach. 

• Chapter 6: Presents the evaluation results and discussion of the 

implemented approach evaluation, comparison with existing framework as 

well as the possible threats to validity.  

• Chapter 7: Concludes of this thesis, and provides avenues of the future 

work.



 

5 

Chapter 2 Background and Literature Review 

2.1 Introduction 

Currently most mobile applications need to persist their data locally. Persisting iOS 

application data locally using existing tools such as SQLite database and CoreData 

framework is a tedious task and a big challenge for developers. Creating data 

persistence components, models’ mappers, queries’ APIs and CRUD operations 

with these existing tools requires a lot of code to be written and many tasks to be 

done. Moreover, there are some challenges, usability issues and common mistakes 

with these tools. 

 

The following literature review will focus on the importance of applying model 

based techniques in the mobile application process. It presents in-depth discussion 

of 18 studies that support this approach. Firstly, this chapter will present a brief 

background about iOS development, iOS architecture, existing iOS data persistence 

tools and usability issues with them as well as challenges and common mistakes. 

Then it will present a literature review and the related work of the addressed 

problem and approach. 

 

2.2  Literature Review Method 

This literature review has focused on mobile development model based automation 

studies, model based code generation for mobile, and mobile data persistence tools 

and techniques. Google Scholar, IEEExplore, Springer, and ACM were used to 

search for related studies. Excluding/Including criteria was defined as the 

following. 

 Included papers should be: 

● New, at least 4 years old. 

● Empirical study. 



 

6 

● Strong enough, at least 5 pages long. 

● Relevant study. 

 

The search resulted in 40 papers. After carefully applying the defined 

excluding/including criteria, 18 studies were selected from them. Then the selected 

studies were grouped into different categories. This chapter will discuss these 

selected studies, after introducing a background about iOS development, iOS data 

persistence tools and model based techniques will be presented.  

2.3 Background 

This section introduces a background about iOS development, iOS architecture, 

iOS data persistence solutions, and challenges and limitations with these existing 

solutions. 

2.3.1 iOS Development 

iOS is an operating system that runs on many Apple’s mobile devices such as 

iPhone, iPad, iPod. It is one of the most popular operating systems for mobile 

devices. It was created by Apple Inc.. It is a Unix-based operating system, subset 

of Mac OS X (based on NeXTSTEP Unix OS, 1989~1997), while Mac OSX is the 

Operating system that runs on Apple MacBook Laptops and iMac desktops. 

 

iOS SDK is a software development kit that allows developers to develop 

applications for devices that run the iOS operating system. Developers can use 

either Objective-C or SWIFT languages to develop iOS applications. The 

integrated development environment (IDE) that used to develop iOS applications 

is Xcode which is provided by Apple Inc. [48]. 

 

2.3.2 iOS architecture  

The iOS architecture is a layered architecture, applications do not communicate 

directly with the hardware, they are separated by intermediate layers. These layers 

are Core OS, Core Services, Media and Cocoa Touch, [47] As shown in Figure 2-

1. 



 

7 

 

 
Figure 2-1: Apple iOS Architecture 

 

The Core OS is the lowest level layer, it contains all the low level technologies and 

functionalities. Including ExternalAccessory, LocalAuthorisation, Accelerate, 

CoreBluetooth, and SecurityServices frameworks. 

 

The Core Services comes on the top of Core OS layer and contains the services and 

data frameworks, such as Cloudkit, CoreData, CoreFoundation, CoreMotion, 

AddressBook, CoreLocation, and Healthkit frameworks. [47] 

 

Media layer manages the graphics, animation, video and audio technology of the 

application. It includes UIKit Graphics, CoreAnimation, CoreGraphics, and AV Kit 

frameworks. 

 

The Cocoa Touch layer manages top layer functionalities of the iOS system 

including maps management with MapKit Framework, gaming features with 

GameKit framework and EventKit that handles the system interfaces view 

controller and events, etc. 

 

2.3.3 iOS application life cycle 

 

It's important for iOS developers to understand the application life cycle. Once the 

iOS device is turned on, there will be no application running except the operating 

Cocoa	Touch 

Media 

Core	Services 

Core	OS 



 

8 

system app. Once the user clicks the icon of an application the app launches and 

the system load the app’s libraries into the memory, and the springboard animates 

the appearance of the launch screen. Here the application begins execution and the 

application’s delegate starts receiving notification. Application delegate is the 

interface that handles events and callbacks from the system to the application 

including app life cycle states change events. [49,50] 

 

The application can have one of these states, Not Running, In Active, Active, 

Background and Suspended states as shown in Figure: 2-2. App will be at one state 

of these at any moment of time, and when the state changes, the OS notifies the 

application delegate about the state update, so developers can handle all 

functionality related to this state. 

 

 
Figure: 2-2 iOS application state changes. 

 

Foreground 

Not	running 

Inactive 

Background 

Active 

Background 

Suspended 



 

9 

2.3.4 iOS Data Persistence  

There are approaches for local data persistence in iOS apps. This section is going 

to discuss the most popular approaches which are SQLite database and Core Data 

Framework.  

 

2.3.4.1 SQLiteDatabase 

SQLite database is one of the most popular data persistence approaches for mobile 

applications. It's a relational database embedded in the C-library that comes with 

the iOS application. SQLite is a lighter version of complex relational database 

management systems (DBMSs) such as MySQL or SQL Server. Its engine is 

configured for independent processes, e.g. a server-less, zero-configuration and 

self-contained and embedded in the same app, while other DBMSs configure 

Client-server database engine. SQLite is less powerful for client-server 

architecture; it has been designed for mobile and independent process.[43] 

 

The key strength of SQLite is that it is a lightweight component that is suitable for 

mobile limited resources, it also embeds SQL engine with most of its 

functionalities, moreover it works as an independent local framework and doesn't 

require extra service or server support. It’s fast, very reliable. [42] 

There are many studies such as [44, 45] recommend using SQLite because it is easy 

to use, reliable, portable compact and efficient. Both [44, 45] studies overviewed 

the SQLite database including its architecture, functionality, features, and the main 

interfaces of it. In addition, [42, 46] provides tutorials on how to use SQLite 

databases with iOS mobile applications development. 

 

2.3.4.2 CoreData Framework 

CoreData [34] is a native object graph and data persistence framework integrated 

with iOS and MacOS operating systems. It manages the model layer and object in 

the application. CoreData generalizes and automates the object graph management 

tasks as well as object life cycle and object persistence. [34, 38] 

 



 

10 

CoreData framework allows data representation as entity-attribute model, that is 

serialized into XML, SQLite, or binary stores. The user can represent the database 

entities and relationships between them using a high level of abstraction 

representation. With this high level abstraction representation CoreData can 

communicate directly with SQLite database, and encapsulates the SQLite 

integration and insulates the developer from them. In addition, CoreData decreases 

the code needed to support model layer and data persistence by 50 to 70 percent 

and relieves the developer from many duties including change management, model 

serialization to disk, memory management and data queries. 

 

The core data framework is used to persist and cache data, it also tracks the data 

changes and supports undo functionality in the mobile local data. The developers 

define their data schema, entities with their attributes and relations between them 

using Core Data’s Data Model editor, then Core Data manages the data models 

instances and provides the following features: [38] 

 

● Data persistence, core data abstracts the objects mapping details, and 

simplifies the data caching from both Swift and Objective-C code, with the 

need to access the database directly.  

● Undo and Redo of Individual or Batched Changes, the Core Data tracks data 

updates and supports undo/redo functionalities as individual change, group 

changes, or by rolling them all back at once. 

● Background Data Tasks, the object management could be done in the 

background to reduce server round trips and potential UI-blocking. 

● View Synchronization, core data helps keeping views synchronized with 

data by providing data source callbacks for presented UI views. 

● Versioning and Migration, core data provides mechanisms for versioning 

the data model and migrating the apps data while the app evolves.  

 



 

11 

2.3.4.3 CoreData Model 

The model in core data framework represented as XML entity in ‘.xcdatamodeld’ 

file, that could be edited using XCode’s data model editor which represents the 

SQL schema using a UML graph editor , or using Property List (PLIST) user 

interface that is very helpful and commonly used for editing key/value attributes 

and XML files with Xcode IDE [39]. 

 

2.3.4.4 Core Data Stack 

 

The core data stack consists of a set of classes, which collaborates to support and 

manage the app's model layer. These classes are the NSManagedObjectModel, 

NSManagedObjectContext and NSPersistentStoreCoordinator, as shown in 

Figure 2-3.  

The NSManagedObjectModel represents the apps entities with their properties 

and relationships, While NSManagedObjectContext manages and tracks the 

changes of data instances. The NSPersistentStoreCoordinator fetches and saves 

the data instances from and to the database store [41]. 

  
Figure 2-3: Core Data Stack. 

 



 

12 

2.3.4.5 NSManagedObjectModel 

 

The NSMnagedObjectModel is the programmatic representation of the 

‘.xcdatamodeld’ file which represents the full data object [40]. It consists of a list 

of NSEntityDescription instances. The NSEntityDescription object represents the 

entity of the schema, it has a list of NSPropertyDescription instances which 

represent the data fields of the entity in the schema.  

 

The Core Data framework manages the mapping between the managed objects 

models and the database. [40] 

 

Xcode provides a data modeling tool which helps to create Managed object models 

and data schema. It also could be built programmatically once needed. 

 

2.3.4.6 Challenges with Core Data framework 

 

Although core data eased creating data schema using a usable Data Model editor. 

It is still complex, tedious for developers and needs special skills to deal with. 

Besides data schema there are many tasks to be done and an amount of code to be 

written such as object mapping, files management, context control, threads 

management, data managers, and data queries and APIs. In addition, there are 

rules that must be considered when dealing with Core Data; These rules are often 

missed by developers. Moreover, there are mistakes developers always fall in.  

 

In this section addresses some of Core Data challenges, difficulties and common 

mistakes. 

 



 

13 

A. Challenges with Key Value Coding (KVC) 

Apple provides the Key Value Coding (KVC), it is a coding mechanism that helps 

developers indirectly access the object’s properties using strings that identify these 

properties instead of invoking property’s accessor setter or getter methods. [61] 

 

This helps developers access object’s private properties, using valueForKey(:) or 

setValueForKey(::) methods, the provided key is a string that represents a property 

of an object, it should match the property’s name spilling. To enable KVC, objects 

should confirm to the NSKeyValueCoding protocol. 

 

For example, a class Person has property firstName, we can set the value of name 

using setValue method instead of directly accessing the name property as shown in 

Figure 2-4. 

 

 
Figure 2-4: KVC example  

 

In Core Data framework although developers can access data from generated 

NSManagedObject, most of time they needs to fetch data from the 

NSManagedObjectContext and NSManagedObject using KVC, also they might use 

KVC to map NSManagedObject in a custom model [63]. 

 

Developers need to map models and entities by identifying the model properties 

using strings, also data fetch queries can only be written as a string query, even the 

schema file name is provided as a string attribute to Core Data. While there is no 

way to autocomplete the provided keys, properties, query strings and file names, or 

// KVC : 

person.setValue: (“Ahd” for key: “firstName”) 

// Instead of direct access: 

person.firstName = “Ahd” 



 

14 

even there is no compiler warning or an automated way to verify these properties 

without running the application. Which provides high potential for developers’ 

mistakes, developers can make typing mistakes while writing data queries, which 

produce critical and hard to detect bugs. [63] 

 

In this thesis the aim is to solve this problem by providing the developers a way to 

identify their data query and queries properties using a user interface that employs 

the DSVL and DSTL modeling. 

B.  Common Core Data Mistakes 

1. Access Managed Object Context from a wrong thread: 

The NSManagedObjectContext should always accessed from the same 

thread it is associated with, since Core Data does not support 

multithreading, it uses thread confinement to process the managed object 

context. Core Data provides a simple interface to access the thread it is 

associated with, simply it is the perform(_:) method which takes a block of 

code (Closure), where the developer can write a code for operations that 

manages the NSManagedObjectContext model. [61] 

 

Figure 2-5 shows an example on how to use this interface. 

 
 Figure 2-5: Using perform(_:) method example. 

 

To avoid threading issues developers should perform operations on 

NSManagedObjectContext using one of these methods. This is one of the 

    managedObjectContext.perform { 
        ... 
    } 
    managedObjectContext.performAndWait { 
        ... 
    } 
 



 

15 

main issues that could be missed by developers who are new to Core Data. 

[61] 

 

2. Passing Managed Objects Across Threads 

When dealing with NSManagedObject developers shall never pass it from 

one thread to another, this is one of the mistakes developers always make. 

It's common when working for multi-threading, for example backend 

services must always accessed from a background thread to avoid UI 

blocking, while UI updates and actions must only be done on the main UI 

thread, so when the developer needs to call a backend service once UI action 

triggered he might pass parameters from the UI Main thread to background 

thread. These parameters could be NSManagedObject which is not thread-

safe. 

  

The solution is to pass the NSManagedObjectID instead of 

NSManagedObject from one thread to another. The NSManagedObjectID 

is the unique identifier for the managed object, it is thread-safe and could 

be passed between threads. It is a property on the NSManagedObjectID and 

could be accessed directly like this: 

let objectID = managedObject.objectID 

 

From the objectID developer can fetch its object model from any thread 

using one of these methods: 

● object(with:) 

● existingObject(with:) 

● registeredObject(for:) 

 

This rule is commonly missed by developers, and leads to threading issues. 

[61] 

 



 

16 

3. Developers need to take time to learn the fundamentals of the framework 

including rules, ins and outs. And missing these fundamentals leads to 

unexpected hard to detect mistakes.[61] 

 

 

  



 

17 

2.5 Related work  

This section will present a literature review and the related work of the addressed 

problem and approach. 

 

2.5.1 Model driven development  

 

Model driven development is widely used in the software engineering industry. 

Including mobile applications development. There are a lot of studies discussing 

the importance of applying model based techniques with mobile application 

development. These Studies cover varied fields within the development process of 

mobile applications such as application prototyping, GUI code generating, GUI 

testing, and automatic generating test cases. 

 

Model driven development is a software development process that focuses on a 

model instead of code, mainly the model plays the central role through the entire 

development process. It focuses on generating a software that is in lower abstraction 

level from a modeled higher abstraction level of that software [3].  

 

The model is a representative entity of the software that can be transformed into 

another model or code. With model driven development developers can separate 

the program architecture from the execution platform [1]. Model driven 

development boosts the application to a higher abstract level, leaving the technical 

details separated from the model [52]. Applying model driven development in the 

software development process accelerates the development of a software 

application [3]. 

 

The main components of model driven development are the model, metamodel and 

modeling language which will be discussed in this section.  

 

The model is an abstract representation of a system, or part of it, that is used to 

describe the system being studied. We can consider the model as a simplified and 



 

18 

partial view that represents the system. Therefore, creating multiple models is 

important to provide a better representation and understanding of the system [6, 

51]. 

 

Da Silva, A. R. et al. [6] introduced a survey study about model-driven 

engineering. It provides some definitions of the model, these are: 

- “A set of statements about the system under study” 

- “An abstraction of a (real or language-based) system allowing predictions 

or inferences to be made”. 

-  “A reduced representation of some system that highlights the properties of 

interest from a given viewpoint”. 

 

They finally defined it as “a system that helps to define and to give answers 

of the system under study without the need to consider it directly”. [6]. 

 

There are some principles that should be applied to a model, first the model should 

identify the object and the phenomenon represented by the model. Moreover, the 

model should be a simple representation of the original object, which means it 

should include only the representative elements and not all aspects of the original. 

Finally, the model should be realistic, it should be able to represent and replace a 

particular purpose of the original object. 

 

Metamodel is defined as “A model that defines the structure of a modeling 

language” [6]. The metamodel represents a set of pairs of the involved classes and 

the relationships between these classes [52]. 

 

Modeling language it is “a set of all possible models that are conformant with the 

modeling language's abstract syntax, represented and that satisfy a given 

semantics” [6]. In addition, modeling language is a guide on how to use models in 

the appropriate way 

 



 

19 

 
2.5.1.1 Textual and Visual modeling  

 

There are several studies employed modeling techniques using textual or visual 

models, this section is going to discuss some of these studies. 

 

First, Thu et al. [1] introduce a mobile applications rule-based model driven 

engineering approach that considers Umple model programming language as a 

main artifact for generating mobile apps. Umple is a textual model-oriented 

programming language that uses textual notation to support modeling techniques 

completely like high level programming languages. The model transformation is 

based on a business rule management system called Drools knowledge based. 

Which uses a rule based engine that forwards and backwards chaining inference, 

this engine is a refinement implementation of the Rete algorithm [56]. The model 

transformation architecture consists of three main components: parser, transformer, 

and code generator. The parser takes the Umple model, parses and forwards it to 

the transformer which has the knowledge base rule engine. The transformer takes 

the parsed tokens, processes and transforms them to internal model representation 

using a set of Drools mapping rules before they passed to the code generator, which 

generates the Android App’s files including XML and java classes. The result of 

the model transformation using enhanced Drools transformation rules are the 

Models, Views and controller classes (MVC) for Android APP. 

 

They validated their approach using a comparative study between their approach 

and other existing approaches, the study was conducted on 18 projects, taking 5 

object oriented programming metrics in considerations, these metrics are, files’ size 

and complexity, coupling, cohesion and depth of inheritance. The data collected 

using Eclipse Metrics Plugin and the result shows the effectiveness of applying the 

proposed tool to generate a small size of source code with less complexity, low 

coupling and high cohesion, and good inheritance perspective. 

  



 

20 

On the other hand, Barnett et al. [2] modeled Domain Specific Visual Language 

(DSVL), and Domain Specific Textual Language (DSTL), to build a framework 

called RAPPT (Rapid APPlication Tool), which helps novice and experienced 

developer with rapidly developing mobile applications. With RAPPT developers 

can define their app characteristics using high level visual notations. And the 

framework provides multiple views to developers, abstract and detailed views 

including page navigations. First, developers use the DSVL to provide a high level 

structure of the app, then by using DSTL they can provide extra details about the 

app, which could not be provided with DSVL. Then the DSVL and DSTL used to 

generate the App Model which then transformed to Android Model using model-

to-model transformation. Android Model then used to generate the Android mobile 

application code. The approach acceptance was demonstrated by using user study 

with 20 developers and researchers with different backgrounds and level of 

experiences. First, they conduct a demographic survey in order to address the 

participants’ backgrounds, then they introduce instructional videos for RAPPT to 

help participants understand how it works and to reduce bias, then participants were 

asked to use RAPPT to perform a specific task and fill a questionnaire which gives 

feedback about their experience with RAPPT. The result shows the acceptance of 

RAPPT and the researcher approach among mobile application and software 

developers. 

  

Moreover, a series of studies [3,4,5] comes to support employing domain specific 

modeling language in the field of mobile application development. They considered 

the domain-specific modeling language as the soul and heart of domain driven 

development. Following the credo: “Model as abstract as possible and as concrete 

as needed” they suggest modeling the (create, read, update and delete) 

functionalities while keeping application behavior in the level of usual control 

structures. Which supports this thesis’s approach by modeling the functionalities 

beyond mobile app data persistence. Their approach used modeling language as 

well as variability modeling to support generating role-based native Android and 



 

21 

iOS. [3] They proved their approach effectiveness with different applications 

including a conference app, a SmartPlug, and augmented reality museum guide. 

 

A list of the main features that should be supported in any modeling language was 

addressed by a survey study [6]. Including model validation and model analysis, 

model-to-model transformations, and model-to-text transformations. Which are 

important to be considered in this thesis modeling approach, especially model 

validation, to avoid unexpected failures while generating data persistence 

components.  

 

This thesis’s solution approach benefits from both textual and visual modeling 

techniques to provide a highly efficient modeling approach that abstracts the details 

of tedious development tasks. 

 

2.5.1.2 Model Based Testing (MBT) 

 

Besides mobile applications code generations, there are many studies that support 

using model based techniques in mobile app testing [7,8,9,10,11,14]. Including test 

cases generation, GUI testing and GUI input generations. 

 

The model based testing is a black box testing technique that uses representative 

models to automate the testing of System Under Test (SUT) [10]. MBT can bridge 

the gap between SUT and the model-based verification [58]. Moreover, MBT helps 

automating the entire testing process including test cases generation, execution and 

verification [10]. 

 

In the remainder of this section we are going to discuss some of the studies that 

cover the effectiveness of applying model based testing on mobile app development 

and other systems, these are Stoat, MobiGuitar, AMOGA, GUICC, and TOM. 

  



 

22 

Firstly, Stoat (STOchastic model App Tester) [7, 14] applies stochastic model-

based testing on Android applications. Stoat improves the Android apps 

functionality testing by enforcing various user/system interactions and validating 

the app behavior from the generated GUI model. The model in Stoat is a finite state 

machine (FSM) which was used early in MobiGuitar [8]. Stoat uses both static and 

dynamic analysis to generate an effective model by exploring app behavior, this 

model then mutated and used to generate test cases for Android app GUI testing. It 

has been evaluated using 93 open-source apps, and the results proved its advantage 

on code and model coverage. In addition, AMOGA [11] comes to support this 

approach. It also used the static-dynamic approach and model based testing with 

FSM model to generate test cases for Android mobile apps. 

 

AMOGA [11] is a model based user interface testing approach that extracts the UI 

information by performing a static analysis. Then using this information to dynamic 

crawl and reverse engineer the model of the application at run time. 

 

AMOGA consists of two main parts, the Static Analyzer and the Dynamic Analysis 

Component. The static Analyzer extracts the application’s APK code to generate 

the app’s bytecode, and then performs a static analysis to the extracted bytecode to 

generate a set of app events which then used as the input for Dynamic Analysis 

Component, which responsive for firing events to the running application during 

dynamic analysis in order to generate the reversed engineering model of the app 

under test. The model created by the Dynamic Analysis Component is a finite state 

machine (FSM) representing the UI states of the app, where the vertex represents 

the app’s states, and the edges represent the transitions between these states. 

 

They evaluated AMOGA using an experiment with 5 open source Android apps, 

they performed AMOGA on these apps to generate the App models which then 

used to generate test cases. Then they executed the generated test cases and 

measured the code coverage. They compared the results with already existing tools 

MCrawlT and MobiGUITAR.  The results showed that AMOGA produces the 



 

23 

highest coverage between the compared tools on all tested applications. They also 

compared the number of crash bugs detected by AMOGA and other approaches, 

the results showed that AMOGA detects the highest number of crashes, this because 

it covers system events. These results proved that AMOGA is able to generate a 

high-quality model for mobile app testing. And address the importance of a high-

quality modeling. 

 

In addition, Baek, Y.-M et. al.  [9] supports the effectiveness of model based testing. 

by using MBT with multilevel GUICC (GUI Comparison Criteria), which achieved 

higher effectiveness compared with other testing approaches in terms of code 

coverage and error detection ability when it was valuated using empirical 

experiments. 

 

MBT is popular in the field of automation GUI testing field not limited with mobile 

app testing only, but also with other software platforms. TOM [10] for example, is 

a model-based testing framework that automatically generates user behavior test 

cases for web applications. The contributors of TOM have addressed a limitation 

of one of the first graphical user interface MBT techniques GUITAR, which is a 

reverse engineering testing framework that supports a variety of model-based 

testing techniques [59]. The limitation was the difficulty of selecting the users’ 

perspective test cases using GUITAR [10]. Their approach (TOM) comes to solve 

this problem using model based generation for user relevant test cases. 

 

Figure 2-6 below shows the structure of the TOM framework.  It shows that TOM 

consists of two main layers, The Adapter layer and the core layer. 
 

The adapter Layer is an interface layer that connect the core of TOM framework 

with the oracles and test automation frameworks, it mainly includes Model 

Loaders: which imports the UI model, and Test Cases Exporters which is needed 

for test cases generation, and the remaining are a collection of components that 



 

24 

supports the user during test cases running process these components are Values 

Editor, Mapping Editor, Mutations Editor, and Results Analyzer . 

 

 

 
Figure 2-6:  TOM framework: conceptual architecture. 

 

The Core Layer uses a representative graph model of the System Under Testing 

(SUT) for test case generation, this graph model is provided by the eAdapter Layer. 

Nodes in this graph represent the interface dialogues such windows and  web pages, 

they also contain validation information that needs to be evaluated. Graph edges 

represent the user actions on the Interface such as a button click. 

 

The remaining components in this layer are Path Generator, Generator component, 

and Generator component. These components collaborate with each other to 

provide effective mutated test cases from the provided graph model.  

 

TOM has been evaluated using a real website called OntoWorks, TOM framework 

used to generate the testing system model which ends with 15 states and 24 

transitions with, home page for example had a 61 validation checks. The evaluators 



 

25 

focused on the three main user-defined mutations for web applications which are 

web page refresh, back button click, and double-click UI element. Finally, the total 

number of paths was 273 paths, with 2,730 generated test cases. The results show 

935 test failures appeared while testing OntoWorks, these results show an implicit 

implementation problem of the tested webpage. It used the same identifier many 

times which should be unique for any element within the page. It also provided a 

few aspects for the researcher to improve TOM as they mentioned. 

 

To conclude, this is another evidence that supports using model driven development 

to automate the mobile applications development process.  

 

2.5.2 Mobile development Automation   

 

On the other side, there are many studies that cover the importance of using 

automatic code or test generation in general for mobile application development, 

mainly for Android and iOS platforms. 

 

First, a study [13] shows the importance of applying automation on mobile 

applications UI testing. They present a deep learning approach that automatically 

generates text inputs relevant to mobile apps UI testing. They justify their approach 

using an empirical experiment with 50 iOS applications that shows the 

effectiveness and efficiency of it. 

 

In addition, a series of experiments study [15, 16] strongly indicates the 

effectiveness of applying automation with resource leak detection in mobile apps 

compared with another manual approach [16]. 

 

Last but not least, Google inc. introduced EarlGrey [17,18,19] which is an iOS UI 

Automation testing framework that simulates real user interaction of iOS app’s UI, 

and helps detect bugs users might encounter. Which is another study that addresses 

the importance of applying automation in the field of iOS mobile app development. 



 

26 

 

Google addressed some issues on the existing testing tool for iOS, such as the 

flakiness issue that appears when verifying end user flows to provide insights for 

different level of application stack, verification for different layers produce non-

deterministic behaviors, which leads to UI test flakiness issues that affect the testing 

results. In addition, some test cases need to wait until a trigger happens, for example 

a test that starts once data finishes loading, the time for the test to start might be 

different from device to another based on the current state of the CPU and the 

device performance, which leads to unreliable test results.  

 

Some tools solved this problem using the sleep() function that lets the system wait 

until the time provided is finished. Waiting time will not affect the system under 

testing because the waiting duration is provided by the test cases. However, Google 

mentioned that this might not solve the problem due to different devices and 

networks speeds which produces flakiness.  In addition, XCUITest which is Apple's 

testing tool for iOS apps that are embedded in Xcode utilized this problem using 

threading but it still has a flakiness issue. 

 

Google's EarlyGray [15,16] solved this problem using Synchronization 

which was introduced in Espresso Google’s testing tool for Android that was 

developed to test the flakiness issue. Using Espresso tool testers are able to define 

behaviors that need to wait the interactions using idling resources. Idling resources 

allows testers to register/unregister classes for waiting, which helps to solve the 

problem. All Android Espresso features were reflected on the EarlyGray iOS 

automation tool and compared to the existing iOS testing tools. 

  

The researcher provided a comparison between EarlyGray and the existing Apple’s 

XCUITest tool. And proved the efficiency, stability and the performance of it over 

XCUITest. 

 



 

27 

EarlyGray is one of the few studies that focus on the iOS application development 

process. As was mentioned by Zein, S. et. al. [64] the iOS development process has 

been avoided by researchers, it has a smaller number of studies than other mobile 

platforms and it needs more contributions. 

 

2.5.3 Time to market. 

 

The mobile market is rapidly increasing with a speed of more than 1000 apps per 

day [21], the number of apps on GooglePlay have exceeded 2.8 million apps by 

September 2019. While it surpassed the 1 million apps in July 2013 [23]. Which 

puts the mobile development teams under a constantly fierce competition. Which 

means an insistent need to finish the development with lowest time and effort. 

Moreover, a large number of mobile application developers are novice developers, 

fresh graduated students or even undergraduate students.  

 

From this point, many studies have focused on accelerating the development 

process of mobile applications, by building tools and frameworks that help 

developers finish their tasks without the need to exhaust themselves with tasks that 

could be done automatically. These studies cover many fields of mobile application 

development process, such as rapid prototyping [2, 20, 21, 22], automatic code 

generation [1, 3, 24], and test cases or test input generation [7,14,8,11,9,10, 13, 15]. 

 

When it comes to employing automation techniques or building automation tools 

to rapid the development process, model driven development (MDD) holds the 

scepter. MDD has its advantage to reduce the development effort by shifting the 

effort from coding to modeling, and by transforming the model-to-model and 

model-to-code MDD can generate the final product or a piece of it, which achieves 

the goal of accelerating the development process and reducing the time and effort 

of it.  

 



 

28 

On the other hand, some studies solved this problem using cross-platform tools that 

allow generating code for multiple platforms such as web and mobile by 

transforming a single product written in one language code to others, such as 

Titanium [25], IBM MobileFirst Platform Foundation [26] and PhoneGap [27]. But 

with these tools developers still need to code the source platform that will be 

translated to others [22]. Also, some tools take their places to rapid development 

by allowing developers to build apps using visual IDE’s, like Codiqa, Eachscape 

[65], but developers still need to code to support and customize the logic behind 

the UI components.  

 

Moreover cross-platform causes lacking in user experience of mobile apps [29, 30]. 

And the majority of cross-platform tools do not support producing native code for 

mobile applications. Thus, bottlenecks might exist with this approach, and in most 

cases, developers need to handle special cases bugs, and spend more effort on UI 

customizations. A. Akbulut et al [28], addressed this problem and provided 

Nativator, a cloud service framework that generates native code for both iOS and 

android platforms. They demonstrate their approach using four case studies 

compared Nativator with other existing tools.   

 

2.5.4 Mobile data persistence 

 

2.5.4.1 iOS data persistence existing solutions 

 

There are several ways to save user data in iOS apps, the simplest one is to save 

data in the user preferences (called NSUserDefaults in iOS) [32]. With user defaults 

the user can save only primitive types such as floats, doubles, integers, and boolean 

values,  or a property list type which instance or collection of  (NSData, NSString, 

NSNumber, NSDate, NSArray, or NSDictionary),  But using user defaults is not 

recommended to be used to store large amount of data, since read/write operation 

will decrease application performance. In addition, it’s not ideal to store sensitive 

data [33].  



 

29 

 

Another way to persist app data locally is by using iOS Core Data Framework [34] 

which is one of iOS core service frameworks. It is similar to using a relation 

database from SQLite [34].  It's a fast way to persist data, good for large amounts 

of data. But it's Difficult to learn and needs an effective architecture design and data 

structure [33] which makes it an exhausting task for non-experienced developers. 

 

Riera, R. has presented an iOS library called Cacher [37, 36]. It allows developers 

to cache any object instead of only caching a JSON object (NSdictionary). Which 

is useful to cache any object. The developer only needs to implement the target 

object from the Cacheable protocol, and implements its methods to define keys for 

all target object properties.  Thus, the developer could have CachableText, 

CacheableImage, CacheableDictionary [36t]. But Cacher doesn't implemented as 

native CoreData library, therefore it neither fast as CoreData [34] the native 

database framework for iOS mobile app, nor suitable for large amounts of data, it 

works fine when caching texts, images or a web service API response, but not a full 

app mobile database. 

 

2.5.4.2 Mobile data persistence general approaches 

 

There are few studies that focused on automatic generation of mobile native 

database components.  For example, I. Mosleh and S. Zein [31] have built an 

automation tool that generates Android database components. They presented the 

Android SQLite Creator (ASQLC) tool which generates Android SQLite database 

and its operator classes that manage the read/write operation. The tool generates an 

XML file representing the application SQLite schema by transforming a visual 

representation of database tables schema entered using the tool user interface, then 

the tool validates the generated XML file and generates the SQLite database of the  

Android application. They demonstrate their approach using a preliminary 

experiment with a group of students, who built a sample database using  the 



 

30 

implemented tool [31]. Despite that this area is still in its infancy and needs further 

contribution. 

 

2.5.5 Model based automatic generation for REST APIs 

 

Fischer, M. et al. [57] introduce an approach to apply model driven development in 

designing and automatic generation of REST APIs application code.  

 

This contribution comes to solve the problem of developers’ mistakes that violate 

the REST development constraints. These constraints must be obeyed by the 

developer when developing REST applications, however many of them are often 

missed by developers.  Moreover, developers have to implement REST resource 

classes manually with their domain specific logic, these resources should have 

standard interfaces, which leads to an amount of repetitive code. 

 

They provide a solution for this problem using Model Driven Software 

Development, their approach generates the REST APIs for REST applications, It 

mainly uses the already existing REST APIS meta model and by model-to-model 

transformation it transform the meta-model to the platform specific meta-model 

which then transformed to the application code. The platform specific meta-model 

is a formal model that represents a basis to REST project code generation. This tool 

provides an easy way to generate the REST application since it integrates to the 

already existing modeling tools. 

 

This approach mainly transforms the already existing Platform Independent Model 

(PIM) to the Platform Specific Model (PSM) using model to model transformation 

and then from PSM to application code. Their solution was implemented to be a 

part of an existing meta model in order to fully benefit from the Model Driven 

Software Development (MDSD) concepts without losing any of them. It also 

assures that the developed code is loosely coupled integrated with the existing 

project code. 



 

31 

 

This approach basically focuses on creating REST APIs applications code from a 

given meta-model, Figure 2-7 shows the flow of tasks for this approach.  Figure 

depicts that the provided Metamodel is transformed to another model before it 

transforms into the application code. First by model to model transformation, the 

tool generates the Platform Specific Meta-Model, then it generates the application 

code based on the generated meta-model using model to text transformations. 

 

 
Figure 2-7: Task of Fischer, M’s approach. 

 

This thesis’s solution approach met this approach in using an already existing 

model and doing a model to model transformation followed by a model to code 

transformation to provide a data query APIs. It also met in integrating the tool into 

the existing modeling tool to provide the highly accessibility of it and to fully 

benefit from the existing modeling techniques. On the other hand, this thesis’s 

approach is different in generating the data persistence components for iOS 

application, these components including all related code for iOS app data 

persistence not only the data queries APIs, it also leverages the DSVL and DSTL 

modeling tools in its approach to provide a highly usable customizations for data 

queries for iOS developers. 

  



 

32 

2.6 Summary 

 

iOS is one of the most popular mobile platforms, almost every mobile app needs to 

persist its data locally, unfortunately persisting data using native components and 

existing tools is a tedious task and needs special skills, which makes it hard even for 

experienced developers. Moreover, the rapidly increasing number of applications in 

the Apps’ markets puts the developers under continuous fierce competition with an 

insistent need to finish their tasks as fast as possible, from this point the need of 

automatic code generation tools has desired. 

 

Model driven development can solve this problem by abstracting the development 

details, making the development process easier, and improving developer 

productivity [2]. There are a lot of studies that discuss the effectiveness of applying 

model driven development on software development process, these studies cover 

many fields within the development process including prototyping, development, 

and testing.  

 

This literature review discussed about 18 studies covering this area, which were 

grouped together in related groups. First, it introduced background on the iOS 

development field, iOS platform structure, and the iOS data persistence techniques. 

Then it discussed the related work for the research problem. The discussion was 

started with some studies that support using model driven development for code 

generations using either textual or visual modeling. Then it addressed some studies 

that implemented model based development in the software development testing 

process including test case generation, GUI testing, and GUI input generations, after 

that it highlighted some studies that cover automatic code or test case generation for 

mobile apps development. In addition, this literature review focused on the current 

state of arts for data persistence tools on iOS development. Finally, it discussed 

studies that employ model based development in automatic generation for mobile 

apps’ database components as well as REST APIs applications.    

 



 

33 

In conclusion, there are many studies that addressed the importance of applying 

model based techniques in the software development process in many fields 

including mobile application development. Model driven development has proved 

its effectiveness at every stage of the software development process, including 

prototyping, development or testing. Model can be a textual, conceptual or visual 

model. The Model based techniques abstract the details of development, keep the 

developer away from tedious tasks. 

 

Model based testing (MBT) can facilitate the automation of the entire testing process, 

including test case generation, GUI testing and GUI input generations, and test case 

execution. There are many studies that address the importance of MBT such as Stoat, 

MobiGuitar, AMOGA, GUICC, and TOM. 

 

There are few studies that focus on the importance of applying model based 

techniques to generate SQLite database or REST APIs applications. However, the 

current state of arts seems to have very little studies that discuss applying model 

based techniques to generate mobile SQLite databases or REST APIs applications. 

But when it comes to using DSVL and DSTL modeling techniques to automatically 

generate iOS data persistence components, it seems that this research is the first one 

to lead this important topic.  

 

In this thesis, the aim is to build an approach that uses the Model-To-Model and 

Model-To-Code transformation modeling techniques and leverages the DSVL and 

DSTL modeling languages to automatically generate the data persistence code and 

components for iOS application, in order to help iOS developers persisting their data 

locally while developing iOS applications.   



 

34 

Chapter 3 Research Methodology 

 

The main goal of this thesis is assisting developers with persisting their iOS 

applications' data locally. Its solution approach design is based on both Fischer, M. 

[57] and Barnett et. al. [2] modeling approaches. The approach leverages the 

Model-driven software development techniques to automatically generate the data 

persistence components for iOS application using model to model transformation 

and model to code transformation for models that specified using Domain Specific 

Visual Language (DSVL) and Domain Specific Textual Language (DSTL) which 

was presented by Barnett et al. [2]. As well as generating the data queries APIs for 

iOS application using model to code transformations, which was covered by 

Fischer, M. [57] In this thesis the aim is to employ these concepts by creating a tool 

that will assist iOS developers to cache their local data on iOS applications. 

 

The remainder of this chapter will focus on the solution approach, tool workflow 

and how it will work, solution implementation settings and constraints, and tool’s 

evaluation. 

3.1 Solution approach 

Figure 3-1 below shows a high level representation of the presented approach. It 

works in two main steps, First the developer needs to specify the data schema using 

Xcode data schema editor. Then the tool will evaluate the schema provided, and by 

model to model (MTM) transformation it will create a representative model for the 

data, the Schema meta-model. Which will be used to generate the data persistence 

files components that include Swift models’ files, models’ mappers, data queries’ 

interfaces and shared managers, and main data operation queries’. Second, the tool 

will use the generated Schema Meta-Model and transform it to a representative 

GUI, so that developers can select to auto generate a custom data fetch query by 

specifying its details using DSVL and DSTL modeling. The DSVL and DSTL 

notations will be transformed to a QueryModel, a representative model for data 



 

35 

fetch query, the QueryModel then will be used to generate a Query Meta-Model by 

Model-to-Model (MTM) transformation, then by Model-To-Code transformation 

(MTC) the tool will use the generated Query Meta-Model to generate the code for 

the custom data fetch query. 

 
Figure 3-1:  A high level representation of the solution approach. 

3.2 How tool works 

This section describes a detailed flow of how the developer can use the tool to 

generate iOS data persistence components as shown in Figure 3-1. 



 

36 

 

The implemented tool works in two main steps, First generating data persistence 

components based on the provided data schema. Second, creating data fetch queries’ 

using Domain specific visual and textual modeling languages DSVL and DSTL. The 

full flow details are described here:  

 

A.  Generating data persistence components 

 

1. The developer uses the already existing Xcode Core Data schema editor to 

generate data schema using visual UML and Key-Value UI editor. Xcode 

then generates the Data schema xcdatamodeld model which represents the 

entities, entities attributes as well as relationships between entities, which is 

described in Section 2.3.4.2 

2. The user then attaches the data xcdatamodeld to the implemented tool, and 

triggers the tool to generate the data persistence classes. 

3. The tool reads xcdatamodeld schema file, evaluates it and does a model-to-

model transformation to Schema Meta-model. Schema Meta-model is a 

representative model for the data schema, containing all data related to 

entities, attributes and relationships between entities such as xcdatamodeld, 

but the difference is that it has additional info related to code that will be 

generated. 

4. The generated Domain Specific Meta-model then used to automatically 

generate data persistence components for  iOS application, these 

components contains the Swift models’ classes that represents the data 

entities, model mappers which are the utilities that map data entities 

instances to their corresponding Swift models , data queries interfaces and 

shared managers, and main queries APIs including CRUD operations. 



 

37 

5. Now basic Core Data components are ready to be used, developers can use 

shared data managers with basic APIs to save, delete, update and fetch data 

records.  

B. Generating custom data fetch query. 

The developer can generate custom data fetch query by specifying its details using 

visual and textual modeling notations DSVL and DSTL. By doing the following 

steps: 

1. Developer selects a Build Query tab screen, 

2. Once the Build Query tab appears, the Schema Meta-Model that generated 

in step ِA.3 above, applies a model to GUI transformation to provide a  

representative GUI. This GUI represents the data schema. In a simple easily 

usable way, so that developers can easily use it to specify their data queries.  

3. Developers use the GUI to specify their data queries they want to generate, 

they can view the data schema, select the entities and properties related to 

their queries, specify methods and functions to be applied, or conditions.  

The developer specifies his query by selecting relevant GUI elements that 

represent the query specifications, and the developer also can edit or add 

extra textual notations to the query condition. The developer can select data 

properties by selecting the entity then choose the propriety from a drop 

down menu. Which avoids him/her from doing a typo mistake inside the 

query string that is described in Section 2.3.4.6 

4. Once the developer finishes adding his/her specification to the query, the 

tool serializes the DSVL and DSTL specifications to a Query Model which 

then transforms to Query Meta-model using Model-To-Model 

transformation (MTM). The generated Query Meta-model contains all data 

related to the query needed for code generation.  

5. The generated Query Meta-model is then used to automatically generate 

data queries and displays its code to the developer in a simple usable GUI. 



 

38 

6. The developer can easily copy and paste the generated query’s code and 

attach it to his/her project. 

7. Any time the developer wants to add more queries or edit them they can, 

simply by repeating step 1-6. 

8. Now all data components are available, developers can simply use them to 

persist, manage, or fetch data records.  

3.3 Main Components 

 

Figure 3-2 shows the main components of the solution's approach tool. First part is 

the model to model transformer who takes the Data Schema, validates it and does a 

model to model transformation to generate the Domain Specific Meta-Model. The 

second part is Queries customizations User interface, which provides developers the 

ability to customize their queries’ APIs using DSVL and DSTL modeling. The last 

part, is the model to code generator, which generates the data persistence components 

code from the Domain specific meta-model, and generates the queries API code from 

the queries API Meta-model. 



 

39 

 

Figure 3-2.  Main components of the solution's approach. 

 

3.4 Framework design 

 

The tool was designed to be an OSX app that runs on mac devices so that the 

developers can easily use the tool while developing iOS applications using Xcode 

IDE which is the only available IDE for developing iOS applications and only 

available for mac devices.  It has been developed using OSX SDK [60], which is a 

software development kit that is used for developing Mac OS applications.  

 



 

40 

The implemented tool designed to obey the object oriented programming paradigm 

as well as SOLID principle, in order to provide maintainable, reusable and easy 

testable code for the implemented tool. In addition, it employs relevant design 

patterns in its implementation, for example the main managers used for code 

generation such as code generator, schema manager and files manager are Singleton 

managers implemented using the Singleton design pattern. Also, the project 

architecture confirms the Model View Controller (MVC) architecture style. 

Applying these principles would help to provide reusable, understandable and 

modifiable code.  



 

41 

Chapter 4 Implementation 

This chapter will present the implementation details, architecture and design of the 

presented approach. That was implemented as a proof of concept tool called 

CDGenerator1. 

4.1 Tool architecture  

In this section the implemented tool’s architecture will be presented. 

 

Figure 4.1 shows the architecture of CDGenerator, which was implemented using 

a three-tier architecture, with three main layers discussed here: 

 

• Presentation layer: This layer contains the graphical user interface, where 

the user can attach his/her data schema, generate data persistence files, and 

create a custom data query using DSVL and DSTL. 

• Business layer: This layer is responsible for validating data schema, parsing 

XML schema, generating meta-models from models, generating data 

persistence code (models, model mappers, managers, basic data queries), 

and generating custom data query.  

• Storage layer: This layer responsible for creating and saving files for the 

generated code.  It saves files to the user’s target directory. It also reads files 

code templates from the application bundle and provides them to the 

Business layer to be used for the code generation process.  

  

 
1 CDGenerator available as open source at: 
https://bitbucket.org/AhdRadwan/cdgenerator/src/master/  



 

42 

 
Figure 4-1. CDGenerator Architecture. 

 

 

4.2 Tool Design  

CDGenerator implemented in a highly cohesive and loosely coupled design. The 

code generation algorithm applied using four main components (SchemaManager, 

MetaModelsManager, CodeGenerator, FilesManager), these components contact 

with each other in a loosely coupled manner.  Each manager responsible for doing 



 

43 

specific related functionalities, they have a list of specialized functions each one is 

responsible to do a specific functionality, and those functions together complete the 

manager main functionality, which introduces the highly cohesive design for our 

approach. The CDGenerator’ class diagram is shown in Figure 4-2. Also a brief 

description for each manager and its functionalities addressed here: 

 

● SchemaManager: This manager is implemented using a Singleton design 

pattern, it holds, validates, and parses data schema. It was implemented 

using a Singleton manager in order to hold schema data in its shared 

instance, so it would be shared, unique, and controlled in the entire app. 

● MetaModelsManager:  A static manager that transforms the data models to 

meta-models. 

● CodeGenerator: A Singleton manager that generates the data persistence 

components from meta-models. It takes a schema meta-model and generates 

from it the core data persistence components (models, model mappers, core 

data managers, and CRUD query’s APIs). It also generates custom data 

query from QueryMetaModel which represents the user’s specific query 

using DSTL and DSVL  modeling languages. It contacts the FilesManager 

to get the classes and files’ templates, it also passes the generated code to 

the FilesManager to save them to the target directory. CodeGenerator has a 

set of methods and utils, each one is responsible for generating code 

component (query, model, attribute, or manager) these methods as well as 

constructor and shared instance are described here: 

○ private init()  
This is the private constructor of the Singleton CodeGenerator 
class.  

○ static let shared = CodeGenerator() 
The shared Singleton instance  of the CodeGenerator class.  

○ generateModelsFiles() 
This method generates model classes for all data schema‘s entities 



 

44 

○ generateModelFor(entity: Entity) 
This method generates model classes for the provided entity 

○ generateParserMethodFor(entity: Entity) 
Generates model data fetch function for the provided entity. 

○ generateSaveMethodFor(entity: Entity) 
Generates save method for the provided entity 

○ generateModelIdentityMethodFor(entity: Entity) 
Generates model’s identity utils for the provided entity. 

○ generateManagersFiles() 
Call generator methods for both CoreDataManager and 
CDQueriesManager. 

○ generateCoreDataManager() 
Generates the code for CoreDataManager. 

○ generateCDQueriesManagerManager() 
Generates the code for CDQueriesManager. 

○ generateCoreDataManagerContent() 
Generates and returns the code content for the CoreDataManager 

○ generateCDQueriesManagerContent() 
Generates and returns the code content for the CDQueriesManager 

○ generateQueryEntityListMethodCode(entity: Entity) 
Generate fetch entity content query API function for the provided 
entity.  

○ generateDeleteMethodCode(entity: Entity) 
Generate delete entity record function for the provided entity 

○ generateStoreMethodCode(entity: Entity) 
Generate save entity record function for the provided entity 



 

45 

○ generateQueryEntityWithIdCode(entity: Entity) 
Generate fetch entity by id query API function for the provided 
entity.  

○ codeFor(queryMetaModel: QueryMetaModel) 
Generates and returns the data fetch query code for  provided 
query meta medel. 

● FilesManager: A Singleton manager that is responsible for files storage 

operations. It reads the file templates from the application resources bundle 

and provides template content to CodeGenerator. It also takes a generated 

code string and writes it on its related file in the target directory. The 

FilesManager holds on its shared instance a reference to the target directory, 

that could be updated by the user from the User Interface, if the user didn’t 

set his target directory the FilesManager stores the files by defaults to the 

users documents directory. FilesManager has set of methods and utils, each 

one is responsible for a specific functionality which are described here:  

○ private override init(): 
This is the private constructor of the FilesManager. 

○ static let shared = FilesManager(): 
This is the shared Singleton instance of the Files FilesManager.   

○ userSelectedPath: String: 
This is the path for the target directory user chosen to save his 
generated files in. 

○ saveFile(code:String, fileName: String): 
This method saves the given code to the target directory under the 
given file name. 

○ readFile(fileName: String, type: String):             
This method reads the a file with the given files name and extension 
located  in the resources bundle, and returns its content as String to 
be used as a template for files generation 



 

46 

○ getTargetDirectory(): 
This method gets the target directory to save files in, if the user 
didn’t set the target directory it returns the documents directory by 
default. 

● CodeUtils: This class provides a set of utility functions, that used by 

CodeGenerator to generate code, these utilities implement as static 

functions, each function provide a specific utility, e.g. attribute declaration 

line code for given attribute, mapping attribute line code, relationship line 

code for given relation, string code for data type … etc.   



 

47 

 
Figure 4-2. CDGenerator’s class diagram. 

 

4.3 Model Transformation Process 

This section presents the applied Modeling transformation process including Query 

Modeling and Schema modeling. 

 



 

48 

4.3.1 Query Modeling process. 

To apply query code generation algorithm, the query specifications are modeled to 

an instance of a Query model which passes through the following modeling 

algorithms. 

 

1. Model-To-Model transformation. 

This process is to ensure the existence of all needed information to generate 

the query code. It transforms the Query model which contains all query 

specifications which are specified by the user, to a Query Metamodel which 

contains all information needed to generate data fetch query code and will 

be the input to the Model-To-Code transformation process.  

Input: Query Model 

Output: Query Metamodel 

 

2. Model-To-Code transformation. 

This algorithm transforms the Query Metamodel, to the data fetch query 

function code. The generated code will be ready to be attached and used to 

fetch data records. 

Input: Query Metamodel 

Output: Code for query function. 

 

The input/output models and its rules and specifications are presented in the 

following list, which are also shown in class diagram in Figure 4-2. 

 

A. Query Model 

The Query is a model that represents the data fetch query which is specified 

by the developer using DSVL and DSTL. This model consists of all 

specifications and attributes that describe the query that will be generated, 

including query return value, list of conditions to compare with, and list of 

sort descriptors. These attributes are represented as properties of the Query 

model under the following conditions: 



 

49 

1. entity: it represents the return value instance type of the query. It is 

a required attribute for model transformation and code generations. 

2. conditions: A set of conditions which are instances of the 

QueryCondition model. It is a required attribute with at least one 

element. 

3. sortBy: It is a set of models representing the sort methods for query 

results, elements are instances of Query Sort model. This attribute is 

an optional value, it could be null. 

 

B. Query Condition Model 

The Query Condition is a model representing the comparing conditions of 

the data fetch query, it consists of a set of attributes that describes the query 

comparing methods. As follows: 

1. entity: The entity model that holds the compare attribute.  

2. attribute, the attribute to compare values with, it is a required field. 

And it should be one of the selected entity attributes. 

3. compareValue: Optional value to compare the condition attribute 

with it. 

4. inverted: A Boolean value indicates whether to compare with the 

complement condition or not. It's an optional attribute, with default 

value “false”. 

5. caseInsensitive: A Boolean value indicates whether to compare 

values with case insensitive or not. It's an optional attribute, with 

default value “false”. 

 

C. Query Meta model 

The query meta model is a model that represents the query model in terms 

of code, it contains all of the required information that is needed to generate 

a data fetch query function code, this information includes: 



 

50 

1. queryParametres: A set of function input parameters that will be on 

the header of the generated function. It's optional and could be 

empty. 

2. predicateFormatingSting: A predicate comparing statement, it is a 

required value. 

3. predicateArgs: A set of arguments that will be passed to the 

predicate statement line of code. It's optional and could be empty. 

4. sortDescriptors: A set of sort descriptor statements to be added to 

data fetch query, its optional value, could be null or empty. 

5. entityName: The name of the data entity to compare its value with 

the condition statement, it’s non-optional value. 

6. modelName: The name of the generated model, which will be used 

on function naming and data parsing, it’s non-optional value. 

 

4.3.2 Schema Modeling process. 

The provided data schema is modeled into a Data Schema Metamodel using Model-

To-Model transformation. This process is done to ensure that the provided data 

schema is valid, and to prepare it as an input for the code generation algorithm by 

adding all information needed for code generation and UI notification. 

 

Input: XML data schema  

Output: Schema Metamodel. 

The schema meta mode contains a set of data entities, and extra information needed 

for code generations, such as appModule name, that needed to set up the 

NSMangedContextModel, it also designed to hold any new information that would 

be add on the future work such as versioning information. 

 

4.4 Generated Code architecture 

Figure 4-3 depicts the three tier architecture diagram of the generated code using 

CDGenerator. The tool is also designed to generate a highly cohesive loosely 



 

51 

coupled code for core data. The figure shows three main components of generated 

code, Models, CDQueriesManager and CoreDataManager, which are described 

here: 

 

 

● Models, these are a set of models’ classes each one represent an entity in 

data schema, every model class is generated in a single file and contains the 

following components: 

○ Set of properties, represents the entity attributes and its 

relationships. 

○ init(managedObject: NSManagedObject), The model mapper, 

which fetches the model from NSManagedObject model.  

○ func save(), The save function that saves an instance of  this model, 
it uses the CDQueryManager save query method with a thread safe 
control, to avoid threading writing issues. 

○ func delete(), The delete function that deletes an instance of  this 
model, it uses the CDQueryManager delete query method with a 
thread safe control, to avoid threading writing issues. 

○ A set of customizable identity utilities that will be used to determine 
model identity. 
 

● CDQueriesManager: Is a Singleton manager containing queries and API 
methods that used to perform a specific operation on the data. Once it is 
generated it will contain a set of main queries that do the basic data 
operations (CRUD). The developers also can add any generated custom 
query to this file. For every entity in a data schema there is a set of basic 
operations functions automatically generated on this Manager here are they: 

○ Save model, this function saves the provided entity record, it adds a 
new record if it doesn’t exist, and it updates the existing one if it 
exists, the existence of a record determined using the identity 
utilities described on the Models section above. 

○ Delete model, this function deletes the provided entity record. 



 

52 

○ Get the model by id, this method returns the model by identity value. 

○ Get all entity records, this query function returns read records for 
the entity. 

 
● CoreDataManager: A Singleton manager that acts as a layer in a middle, 

separates the data query APIs from the CoreData details. Elaborates  the 

developer from the tedious coding tasks of Core Data, it provides a set of 

functions and utilities to be used by CDQueriesManager to perform data 

operations, without the need to connect Core Data directly, thus the 

CDQueriesManager uses the CoreDataManager utilities and the 

CoreDataManager contacts the core data elements and components and 

does the data operation in a safe thread. It also manages the database setups, 

configures the database instances, and provides a simple customizable 

utility that controls the database directory, location and schema model.   



 

53 

 
Figure 4-3. Generated code architecture. 

 



 

54 

4.5 Schema validation procedure 

The CDGenerator takes the data schema that is "xcdatamodeld” format which is an 

XML format that represents the Core Data model, it contains the entities, entities’ 

attributes and relationships between entities. The CDGenerator evaluates the schema, 

using the following procedure:  

1. CDGenerator reads the XML String schema and encodes it to a UTF8 

format producing an NSData object.  

2. CDGenerator parsing and validating the NSData object using the 

XMLParser that is embedded in the Foundation library that comes with iOS 

SDK. 

3. The parsed data schema is then evaluated, to check if there is any missing 

or invalid attribute, entity or relationships. 

4. If the XML is invalid or has an invalid or corrupted element it will produce 

a failure on steps (1, 2), if there is any missing element on the schema it will 

be figured on step (4).  

5. CDGenerator presents a failure message if there is any failure occurs, 

otherwise it will present a success message. 

4.6 Code generation algorithms.  

This section addressed the two implemented algorithms of code generation, core 

data generation algorithm and the custom query generation algorithm. 

 

4.6.1 Core data generation algorithm. 

The proposed core data generation algorithm can be described in the following 

pseudo-code: 

● Algorithm Input: the core data XML schema,  



 

55 

● Algorithm Output: the core data components, as a set of swift files 

representing the entities’ models, models’ mappers, core data managers and 

a set of basic query APIs. 

 

The algorithm applied using the following main steps: 

1. Read the XML data schema provided.  

2. Validate and parse XML the data schema as described in Section 4.4, 

generate the data schema meta-model, and provide schema validation and 

parsing result message (success or failure). 

3. For each entity in data schema generate the model class by the following 

steps: 

a. Load class template. 

b. For each entity in the model generate and append a property 

declaration line code. 

c. For each relation in the model generate and append a relationship 

property declaration line code. 

d. Generate model data fetch function code. 

e. Generate the model’s main operations functions: 

i. Generate the model save function code. 

ii. Generate model delete function code. 

iii. Generate a set of customizable identity utilities code. 

f. Save the entity model in a separate file in the target directory. 

4. Generate Core data manager in the following steps: 

a. Read CoreDataManger file template from   app bundle. 

b. Setup the data schema module name. 

c. Save CoreDataManger to the target directory. 

5. Generate CDQueriesManager in the following steps 

a. Read CDQueriesManager file template from tool’s app bundle. 

b. For each data entity Generate main data operations queries APIs 

functions using the following steps: 

i. Generate store entity record function code. 



 

56 

ii. Generate get entity record by id function code. 

iii. Generate all entity records function code. 

iv. Generate delete entity record function code. 

c. Save CDQueriesManager to the target directory. 

6. Show code generations completion message. 

4.6.2 Custom query generation algorithm. 

 

The proposed custom data query generation algorithm can be described in the 

following pseudo-code: 

● Algorithm Input: the data query specified using DSVL and DSTL. 

● Algorithm Output: the data query function code. 

 

The algorithm applied using the following main steps: 

1. Fetch query model from DSVL and DSTL. 

2. Transform QueryModel to QueryMetaModel by model to model 

transformation. 

3. Generate query method using the following steps: 

a. Load query function template code. 

b. Generate and set query func parameters and return value. 

c. Generate and append query conditions line codes. 

d. Generate and append descriptors line code. 

e. Generate query fetched data parser line code. 

4. Display generated query code. 

 

4.7 Tool’s Use case Diagram. 

 Figure 4-4 shows the use cases diagram of the implemented tool, which represents 

the main functionality of the tool. Simply, the user needs to attach a data schema and 

then he can generate the core data components. Users also can generate a custom 

data fetch query by specifying its attributes conditions, results type and sort methods 



 

57 

using the DSVL and DSTL modeling languages. These four use cases are shown in 

figure 4-4. 

 

 
Figure 4-4: Tool’s use case Diagram. 

 

  



 

58 

4.9 DSVL & DSTL Modeling language 

This section presents the design of Domain Specific Visual language (DSVL) and 

Domain Specific Textual Language (DSTL), which have been designed based on 

Barnett et al. [2] DSVL and DSTL modeling languages.  

 

The DSVL & DSTL are visual/textual languages that represent and abstracts the 

details of data fetch query. Developers can use them to specify the details of a custom 

data fetch query using a relative visual or textual notation to the data query. DSVL 

& DSTL isolate the developer from the tedious development tasks by abstracting 

code details in a higher abstraction level.  

 

4.9.1 Domain specific Visual language (DSVL) 

 

The domain specific visual language consists of GUI visual elements and 

components, each one represents a specific concept in the data fetch query, these 

notations are corresponding to the QueryModel, which acts as the base of 

QueryMetaModel. 

 

 

 

 

 

 

 

 

 

 

 
 



 

59 

Concept Notation Values Description 

Return value 

 

List of data schema’s 
entities 

The return value type of the 
query. 

Condition 
attribute 

 

List of selected entity’ 
attributes 

An attribute to compare/filter 
values with.  

Compare 
 

{>, <, ==, <=, >=, 
Contains, Begins with, 
Ends with, regex, in 
array} 

 A set of radio buttons, each 
represents a compare code. 

Compare code 
 

DSTL condition A compare code that 
compares values and 
conditions with e.g. ‘==’. 

Compare with 

 

Any value e.g. {Number, 
String, Array, boolean, ..} 

Optional value to compare 
value with. If it didn’t set, the 
compare will be to a query 
parameter. 

Invert condition Invert  { On(invert), Off } A switch determines whether 
a query condition is inverted 
or not. 

Compare case Case insensitive  { On (case insensitive), 
Off (case sensitive) } 

A switch determines whether 
the compare case is sensitive 
or insensitive. 

Sort descriptors  List of selected entity’ 
attributes 

An attribute for sorting the 
query return data by it. 

Sort method 
 ,  

Sort method ascending 
descending. 

Table 4-1: Custom query visual language 

  

4.9.2 Domain specific Textual language (DSTL) 

 

The domain specific visual language consists of a set of textual notations, using 

these notations developers can add or edit specific aspects to the target query. 

Mainly specifying the compare code shown in table 4-1 above. And setting the 

‘compare with’ value. 

 



 

60 

The CDGenerator’s DSTL is designed to use the same iOS predicate notations, 

since iOS developers are aware of them, and used to use predicates to fetch, sort or 

filter any set of models. So that the developers who will use CDGenerator don’t 

need to learn extra notations or query codes. Moreover, DSTL comes as an optional 

feature with CDGenerator, so developers who don't have knowledge of Predicates 

and their notations, still can specify their query details using some visual notations, 

which include most of the basic notations. 

 An example of these Predicate notations: 

{CONTAINS, LIKE, MATCHES, avg, count, max, min, key IN , =[c], =[d], 

Mapbox-specific functions, … } 

 

4.10 How to use 

This section presents an example of using the CDGenerator to generate iOS 

application’s core data components, and generate Custom data fetch query specified 

using DSVL and DSTL modeling languages. 

 

A simple data schema used in this example, consists of two entities: cities and 

countries. Each country has a list of cities. Figure 4-5 shows the example data 

schema specified using Xcode Data Model editor. 

 



 

61 

   
Figure 4-5: Core data example’s data schema. 

  

The tool’s home screen appears as shown in Figure 4-6, where the user can attach 

his data schema and select to generate core data components.  



 

62 

 
Figure 4-6: CDGenerator home screen. 

 

Tool works in two steps. First, generating iOS application’s core data components. 

Second, generating custom data fetch query specified using DSVL and DSTL 

modeling languages. These two steps presented in the the following sections:  

 



 

63 

4.10.1 Generating data components 

The user can generate the core data components using the following steps: 

1. Browse and select the data schema file, or copy and paste its content in the 

next view. 

2. Select the target directory, where the generated code files will be saved. 

3. Click the “Generate code” button. 

4. Completion state message dialog appears notifies the user about the code 

generation completion states. 

a. If the data schema is valid a successful message appears 

b. If the data schema is invalid or a failure occurs, a representative 

failure message appears to the user. 

5. The user can navigate to the target directory view and generate the attached 

files to his/her iOS project. 

 

Figure 4-7 shows the generated files for the countries example, and Figure 4-8 

shows a part of the generated CityModel class, this part contains its properties 

constructor and data fetch parser. The full generated code for the presented example 

available in the Appendix A. 

 

Figure 4-7: Generated files for the countries example. 

 



 

64 

 
Figure 4-8: Part of the generated CityModel class. 

 

4.10.2 Generating custom data fetch query 

The user can generate custom data fetch query by specifying its specifications using 

DSVL and DSTL in the following steps:  

1. Select the BuildQuery tab to view the build query screen, which is shown 

in Figure 4-9. 

2. Select an entity from the entities drop down menu. Entity represents the 

return value of the query. 

3. Add set of conditions to data query using the following steps: 

a. Select the attribute associated with the condition. 

b. Select condition code, each one of radio buttons represents a 

condition code e.g.” BEGINSWITH”, “==” … etc. 

c. User can edit the condition code/method from the condition text 

field, update it or add a custom condition, each condition is a DSTL 

code that matches a predicate condition iOS developer used to deal 

with e.g. “CONTAINS”, “MATCHES” … etc. 



 

65 

d. Specify a condition value, this value represents a query parameter 

value which is the value that will be compared with the entity record 

attribute values using the condition code specified in the previous 

step. The condition value is optional, if the user didn’t set its value, 

the generated query method will have a function parameter 

representing the generated query parameter that will be passed to the 

method programmatically. 

e. Users can turn the Invert switch on/off to invert the query condition.  

For example: 
        //Condition 
          If attribute MATCHES conditionValue 
        //Inverted condition will be 
          If NOT attribute MATCHES conditionValue 

 

f. Users can turn the case insensitive Invert switch on/off to make the 

comparison case insensitive or not.  

g. Click the add condition button. 

h. Repeat steps from a-g if the user wants to add more conditions to 

his/her query. 

4. Specify sort descriptor using the following steps: 

a. Select a sort by attribute to sort the fetched data by the selected 

attribute. 

b. Select sort method ascending/descending, by selecting the 

representative sort icon. 

5. Select the “Generate Query” button. 

6. Query code will be available in the code text field at the bottom of the 

screen. 

7. Update the code if needed 

8. Copy and paste the generated method to CDQueriesManager, and rename 

it if needed. 

9. For new queries the user needs to Click the “Reset” button and repeat steps 

from 2-9. 

 



 

66 

Figure 4-9 shows an example of specifying the search city by name query using 

DSVL and DSTL for the proposed example schema. And Figure 4-10 shows the 

generated code of this query. 

 

Figure 4-9: Specify search city query. 



 

67 

 

 

Figure 4-10: Generated code for search city query function. 

 

 

 

 

 

 

  



 

68 

Chapter 5 Experimental design 

The implemented approach has been evaluated using a case study and a user 

evaluation. This chapter is going to discuss the evaluation details including 

participants' background, case study setup, validation procedure, evaluation metrics 

and independent variable. 

5.1 Participants’ background 

The evaluation was conducted on a group of 6 participants with different skills and 

different levels of experience. The participants details are presenting here:  

 

Participant 1: Is an iOS developer who has three years experience in the iOS 

development field with both iOS SDK programming languages Swift and 

Objective-C. She worked on three real and live iOS apps with different sizes, one 

of them is more than 4 years large. She didn’t have experience working with a core 

data framework, she used to use NSUserDefaults to store local data and user 

preferences. 

 

Participant 2: Is a mobile developer who has three years experience in working in 

the mobile development field with different mobile apps’ SDKs, he worked as 

Android, iOS, and React Native mobile developer, he has one year experience 

working on 4 small iOS apps with Objective-C programming language. He didn’t 

have experience working with the Core Data framework. 

 

Participant 3: Is a mobile developer who has more than five years experience in the 

mobile development field, with four years as Android developer and about one year 

as iOS developer. She worked on more than 5 Android apps with different sizes 

and one large iOS app written with Objective-C language.  She stored preferences 

data locally with mobile apps, but she didn’t use the Core Data framework. 

 



 

69 

Participant 4: Is a junior mobile developer who worked for one year on cross 

platform mobile apps. He joined an iOS development team for only a few months 

on working on a small native iOS project. His iOS language experience is Swift. 

He didn’t store local data in iOS before. 

 

Participant 5: Is a graduated Computer System Engineering student who took a 

training course in iOS app development years ago, but didn’t work on the 

development field. She learned how to use the Core Data framework during the 

training course.  

 

Participant 6: Is a software developer who has one year experience working on 

different platforms web front-end and mobile. He has a few months experience 

working on a small iOS project. His iOS language experience is Swift. He tried and 

learned to use the Core Data framework but didn’t have experience using it with a 

real iOS app. 

 

5.2 Evaluation Setup 

The evaluation method was conducted on Mac devices using macOS operating 

systems with version 10.15 or later. With at least 8G RAM, using Xcode 11.1 or 

later. And iOS 13 simulator. 

The case study was conducted using two projects. First one is the implemented tool 

(CDGenerator) which is an OSX app, and the second one is a sample iOS app 

project called CDGeneratorDemo. These two projects are available as open source 

projects on:  

● Demo project on Github2 

● CDGenerator tool available on Bitbucket3 

 

 
2 CDGenerator available at: https://bitbucket.org/AhdRadwan/cdgenerator/src/master/  
3 Demo project available at:  https://github.com/a-radwan/CDGeneratorDemo 



 

70 

The CDGeneratorDemo implemented to be used for this case study. It has a simple 

Core Data schema. The data represents Countries and their Cities. This sample also 

has the UI components and actions needed to display a list of cities and countries, 

search for cities or countries, and delete a city. 

 

The Sample app consists of three tab screens, Home Tab, Countries Tab, Cities 

Tab. Home screen has a full simple button to insert data. Countries and Cities 

screens have a list view (UITableView) and a search bar to display the 

countries/cities list items and search for them. The City item’s cell has the ability 

to swipe and delete. 

 

Participants will use the Sample data schema to generate the data persistence 

component for the sample project, then use these components to do a list of tasks 

to connect the Sample UI with its database using the code generated by 

CDGenerator tool as well as a custom data fetch queries built with CDGenerator 

DSVL & DSTL models. 

 

5.3 Evaluation Procedure 

First, participants were asked to fill a questionnaire focused on participants' 

background and their level of experience. 

 

Then a demo for the implemented tool (CDGenerator) was presented.  Then the 

participants were asked to prepare the evaluation environment and do a list of tasks, 

thereby the evaluation procedure was as follow:  

 

5.3.1 Environment setup 

The participants did the following tasks: 

1. Download and run the implemented CDGenerator macOS app. 

2. Download the sample project CDGeneratorDemo app.  



 

71 

5.3.2 Generate data persistence files 

3. Access CoreData schema “Sample.xcdatamodeld” file from sample project, 

and attach it to CDGenerator. 

4. Select project workspace directory, or target directly to save the auto 

generated files in. 

5. Generate data persistence files using CDGenerator tool. 

6. Attach the generated files to the sample project and assure the Sample 

project can build and run successfully 

5.3.3 Use the generated code and build a custom query 

7.  Use generated main queries and APIs to do these lists of tasks respectively  

a. Save a list of Cities and Countries objects to database. 

b. Query list of Countries models. 

c. Query list of Cities models. 

d. Delete a City item. 

 

8. Generate specific custom queries (search countries query) using 

CDGenerator, add them to the sample iOS project and then use them to fetch 

data. 

9. Generate another query (search cities query), attach and use it to fetch data. 

This task is designed to be quite similar to the previous one in order to 

measure the learning factor effect of using this tool. 

 

Finally, developers were asked to fill the second part of the questionnaire in order 

to figure out their acceptance and feedback of the implemented tool. 

5.4 Evaluation Metrics 

5.4.1 Developers experience  

The developers’ skills and level of experience were collected to determine the 

minimum skills needed for developers to be able to use CDGenerator to build data 

persistence components as well as custom queries and use them. 

The developers experience determines with these lists of factors: 



 

72 

● Number of years experience in development field 

● Experience background. 

● Number of years experience in iOS development filed 

● iOS language experience. 

● Number of iOS apps projects worked on. 

● Average size for iOS projects worked on 

● Experience working with Core data framework. 

  

5.4.2 Time to use 

The time needed to do specific tasks using CDGenerator were collected. In order 

to figure out the efficiency of this approach. 

 

This metric is measured by observing each task separately. The participants were 

asked to share their screen, once the participant started working on a task a 

stopwatch was started until the participant built and ran the app successfully after 

he/she finished the task. Then the timer value was read and recorded. 

 

 The time collected for the following tasks: 

a. Generate Core Data files using CDGenerator, and attach generated files to 

Sample projects. with the iOS project using CDGenerator. 

b. Tasks (7, 8, 9) from Section 5.3 above. 

  

5.4.3 Ease of Learning 

 

The ease of learning metric was measured by observing the participants' mistakes 

and system failures while participants were doing the required tasks. As well as 

time needed to discover how the tool works and use it.  

 

The second part of the questionnaire focused on the usability, accessibility, failures 

and user acceptance. After users finished all tasks, they were asked to fill the second 



 

73 

part of questionnaire, which has a list of Likert scale questions, first five questions 

targeted Ease of Learning metric which determined by the following factors: 

● Problems while using the tool. 

● Participants rating on the tool’s usability level. 

● Ability to understand how the tool works. 

● Ability to understand the generated code. 

● Participants rating on the generated code complexity. 

 

Every factor has a Likert scale question, the questionnaire questions are attached 

on the Appendix A. 

Moreover, the tasks (8, 9) were quite similar in order to collect the time needed to 

build a custom query first time and second time, which help figure out the effect of 

the learning factor, and the learning ability of this tool. 

 

And to avoid threats to internal validity tasks (8, 9) were randomly swapped for 

random participants, in other words some participants start with 8 (building custom 

query for countries) and others start with 9 (building custom query for cities). 

 

 

5.4.4 User Acceptance 

This metric is also measured from the second part of the questionnaire as well as 

user suggestions and feedback.  

The questionnaire last 5 questions targeted the user acceptance metric which was 

determined by the following factors: 

● Participants rating on the generated code complexity. 

● Participants rating on the generated code quality. 

● If participants prefer to type query code manually or generate it using 

CDGenerator.  

● Participants rating of this tool simplicity compared with manually coding. 

● If participants prefer to use this tool again.  

  



 

74 

Chapter 6 Results and Discussion 

This chapter presents the case study and user evaluation results, data analysis and 

discussion. 

6.1 Participants experience 

The participants’ experience was collected using the first part of questionnaire, the 

graphs below shows the background and level of experience for the participants. 

The participants background details for each participant were discussed in section 

5.1 above  

  

The following Table 6-1 below shows participants’ answers for a list of 

questionnaires’ first part questions.  

 

Participant/ 

Experience 

factor 

Years 
experience in 
development 
field 

Experience 
background 

Years 
experience in 
iOS 
development 

iOS language 
experience 

Number of 
iOS apps 
you 
worked 

Average size 
for apps 
worked on 

Did use 
Core data 
framework 
on a real 
app 

Have 
experience 
with Core 
data 

1 2 - 5 years Mobile 2 - 5 years Both 2 -3 1- 2 years No No 

2 2 - 5 years Mobile 6 months to 2 
years 

Objective-C 4-5 
 

Less than or 
equal 1 year 

No No 

3 5-10 years. Mobile 6 months to 2 
years 

Objective-C 1 2 - 5 years 
 

No No 

4 6 months to 2 
years 

Mobile Less than 6 
months 

Swift 1 Less than or 
equal 1 year 

No No 

5 Less than 6 
months 

Mobile Less than 6 
months 

Objective-C 0 - No Yes 

6 6 months to 2 
years 

Mobile Less than 6 
months 

Swift 1 Less than or 
equal 1 year 

No Yes 

Table 6-1: Participants’ answers for developers experience questions. 

 



 

75 

 

 

 

 

 
Figure 6-1:  Participants’ experience graphs. 

  



 

76 

Graphs in Figure 6-1 show that participants are distributed in different levels of 

experience. Depending on all experience factors listed on section 5.5.1 above. 

 

All developers were able to understand how the tool works, generate data 

persistence files, generate custom data fetch query, understand the generated code, 

and use it to insert records, delete records and fetch data. Moreover, even the 

developers who don’t have Swift experience which are 50% of the participants were 

able to use the generated Swift code to do the required tasks. 

 

Most participants don't have experience working with core data framework, only 2 

of the 6 participants tried it while learning iOS development and they didn’t use it 

on real projects. However, all participants were able to save records, delete records, 

and fetch data. Without a need to learn or use the details of the Core Data 

framework.   

 

Most of participants (5/6) confirm that they made mistakes using KVC, and all of 

them support using code generation tools to avoid these mistakes. 

 

Three participants used code generation tools for other frameworks and platforms, 

one mentioned BuilderX [35] which is a browser based screen design tool that 

generates React Native UI code from design. Another participant mentioned that 

he used to use online language switch tools to switch a block of code from language 

to another. But none of them have used model based code generation tools for iOS 

apps, Core Data or any other data persistence technology. 

 

To conclude, the participants have different levels of experience in the development 

field, and different levels of experience on iOS development, they also have 

different iOS language experience which, however,  all of them were able to 

understand how CDGenerator works, and were able to use it to generate a valid iOS 

data persistence components as well as custom data fetch query. Accordingly 

CDGenerator can effectively be used by developers with different levels of 



 

77 

experience, also the generated code is usable, clear, simple and understandable even 

for fresh developers or those who come from different backgrounds.  

6.2 Time to use 

The Table 6-2 shows a list of tasks and time spent doing them by each participant. 

Participant# Task 
(time in minutes) 

P1 P2 P3 P4 P5 P6 Average 

Task 1: Generate 
data persistence 
files 

1:20 1:00 2:30 1:30 3:00 2:10 1:55 

Task 2: Get list of 
records 

1:02 0:40 3:00 1:30 5:00 1:23 2:05 

Task 3: Get 
another list of 
records. 

0:23 0:20 0:31 0:35 1: 00 0:41 0:35 

Task 4: Delete 
record. 

0:30 0:29 1:00 2: 30 0:37 0:22 0:54 

Task 5: First query 2:58 2:40 4:55 6:00 4:20 2:50 3:57 

Task 6: Second 
query 

1:00 0:50  1:15 1:40 2:02 2:30 1:32 

Table 6-2: Participants tasks and time to do them. 

Table legend: 

● P1-6: Participants numbers.  

● Task 1: Generate data persistence files, this task contains a list of tasks from (3 - 6) defined 
in section 5.3 the “Evaluation Procedure” under “Generate data persistence files” 5.3.2 
subsection above. 

● Task 2: Get list of records, load list of Countries records using auto generated code. 

● Task 3: Get another list of records, load list of Cities records using auto generated code. 
This task is quite similar to the previous one, but with a different Entity. 

● Task 4: Delete record, connect UI delete city action to the auto generated delete city 
method. 

● Task 5: First query, generate search query (countries or cities) using CDGenerator, add 
them to the sample iOS project and then use them to fetch data. 

● Task 6: Second query, generate another search query and use it. This task is quite similar 
to the previous one but with a different entity. 



 

78 

 

The data presented in the Table 6-2 above introduces many points. First, by the 

average time for every task appear to be small, for example the first task has average 

1:55 minutes, which means that developers can automatically generate their data 

models, models mappers, core data connectors, main APIs managers and their data 

basic queries and APIs as well as build and run, with about 2 minutes.  

 

By comparing the records of similar tasks Task 2 with Task 3 and Task 5 with Task 

6. We can easily see that the second task always has less time than the first one. For 

example, the average time spent doing Task 2 is 2:05 minutes while it is 0:35 minutes 

for Task 3, although these tasks are quite the same. Also, all Task 3 records have less 

time than Task 2 records. This indicates that once a user uses a query of generated 

code, he/she will be able to use the others with no less effort and time, thus the delete 

city task (Task 4) has less time than Task 2. Which also supports this claim. Task 4 

seems to have a bit higher time than Task 3 which is feared well, due to different task 

details with Task 2 and Task 3. 

 

In addition, Task 6 has average time (3:57 minutes) which is much less than the Task 

5 average time (1:32 minutes), even though there are quite similar tasks. Which 

means that once a user tries the CDGenerator to generate one query he will be able 

to generate the others attach and use them within about 1.5 minute. This indicates 

that CDGenerator has a good usability and learnability. Users need a one single try 

for the CDGenerator feature to understand how it works and be able to use it 

efficiently.  

 

6.3 Ease of Learning  

The ease of learning metric was measured by observing participants’ mistakes, 

while doing required tasks. As well as time needed to discover how the tool works 

and use it. 



 

79 

 

In the previous section we discussed the time to learn in detail, which concluded 

the good usability and learnability of CDGenerator. In this section we will discuss 

some users' mistakes, system failures as well as participants’ feedback, suggestions 

and User acceptance questionnaire. 

 

The Table 6-3 shows the questionnaire’s part 2 results. Which focused on the 

usability and the learnability of the implemented approach as well as the user 

acceptance.  



 

80 

 

 

Participant/ 

Question 

 Did you 
face any 
problem 
while using 
this tool? 

How do 
you rate the 
usability 
level of this 
tool? 

Did you 
face any 
problem 
understandi
ng how the 
tool works? 

Did you 
have any 
problems 
understandi
ng the 
generated 
code? 

How do 
you rate the 
generated 
code 
complexity 
of this tool? 

How do 
you rate the 
generated 
code 
quality of 
this tool? 

Will you 
prefer to 
type data 
query 
manually or 
with this 
tool, next 
time? 

If you used 
a core data 
framework 
before, how 
did you 
find this 
tool? 

Will you 
prefer using 
this tool 
again? 

1 No Easy No No Simple Very good Using this 
tool 

Simpler Yes 

2 No Very easy 
to use 

No No Normal Very good Using this 
tool 

- Yes 

3 No Easy No No Normal Very good Using this 
tool 

- Yes 

4 Yes Easy No No Simple Good Using this 
tool 

Simpler Yes 

5 No Very easy 
to use 

No No Normal Very good Using this 
tool 

Simpler Yes 

6 No Easy No No Simple Good Using this 
tool 

Simpler Yes 

Table 6-3: Participants’ answers questionnaire’s part 2 questions. 

 

6.3.1 Usability questions  

First 4 questions of the second part of the questionnaire targeted the user usability 

and the learnability of the tool. Which will be discussed here. 

 

Most of participants (5/6) confirmed that they didn’t face problems while using the 

tool, only one participant mentioned that he didn’t figure out the effect of the invert 

toggle button. His question has been answered that the invert means the 

complement or the opposite of the query condition. 

 

All of the participants confirmed that they didn’t have any problem understanding 

how the tool works and understanding the generated code. Also, all of participants 

gave positive answers for the usability level questions, (4/6) marked it as easy to 

use and (2/6) marked it as very easy to use. 



 

81 

 

In conclusion, the questionnaire results indicate the high usability and 

understandability of this tool. 

 

6.3.2 Failures, mistakes and errors 

 

User activities were observed using the case study in order to measure the usability 

of the tool as well as discover the mistakes and errors users might make while using 

CDGenerator, the focus was mainly on the following errors: 

1. User mistakes, which could occur due to tool misuse or misunderstanding 

of its functionalities which might lead to invalid generated code. 

2. System failures, which might be system crashes, runtime exceptions, IO 

permission issues, or any other unexpected system behaviors. 

3. Generated code errors, which might be a syntax error on generated code, 

invalid generated query or corrupted code. 

 

All the participants were able to do all required tasks using the generated code, they 

didn't need to manually type any mapping method, data fetch query code or a bug 

fix in generated code. All code was ready to use directly. Participants' effort was 

limited only using the tool to generate code, understanding the generated code, and 

simply using it.  Which proves the effectiveness of CDGenerator, on generating 

valid data persistence components. 

 

All developers were able to do the required tasks without making a critical mistake, 

even those who don’t have experience with Swift language code were able to 

understand the generated code and use it.  

 

There were no any system failure, or error in the code generation process, or even 

syntax error on the generated code; However, we noticed a common user mistake. 

Some participants didn’t notice the “Reset” button, they started adding new 

conditions to the existing query without resetting the last query. This is needed 



 

82 

because the tool allows users to add a list of conditions to their query and once the 

user wants to generate a new query he/she should type the “reset” button to reset 

the existing query, but this wasn't a critical misleading feature, users were able to 

learn this feature, and avoid the “reset” mistake once they try it the first time. This 

issue is marked as to-do, and will be moved to future work. In addition, tool 

descriptions as well as adding tooltips, hints and suggestions, will help users 

understand the details of CDGenerator. 

 

6.4  User Acceptance 

The questionnaire also was used here to figure out users acceptance. The last 5 

questions covered this metric. In this section we are going to discuss and analyze 

the user feedback questions results. 

 

All of the participants provided positive feedback on the generated code 

complexity’s question. (3/6) marked it as Normal and the other (3/6) marked it as 

Simple.  

  

In addition, all of participants provided positive feedback for code quality 

questions, (2/6) participants answered that the generated code has a good code 

quality, the other (4/6 ) participants answered that the code has very good quality.   

 

All of the participants confirmed that they prefer to use this CDGenerator next time 

to generate core data components. Also, all of them prefer to use CDGenerator to 

generate a custom data fetch query instead of typing it manually. 

 

6.5  Participants achievement 

All participants were able to do all specified tasks, required during the case study 

procedure, a sample of a participant achievement on the case study sample project 



 

83 

is available on GitHub4, Also Figure 6-2 depicts a participant’s achievement of 

required tasks as follow: 

- Figure 6-2 (A): Shows the Home tab screen, with insert button data. 

- Figure 6-2 (B): Shows countries tab screen with inserted countries records, 

which were loaded by the generated query countries list. 

- Figure 6-2 (C): Shows cities tab screen with inserted cities records, which 

were loaded by the generated query cities list. 

- Figure 6-2 (D): Shows cities data after applying search for city by name 

query, and using it to figure cities which starts with “Ra”, the search query 

was generated using CDGenerator by specifying the query details using 

DSVL and DSTL. 

- Figure 6-2 (E): Shows delete action for a city record, which used to call the 

delete query by the generated delete operation. 

  

 
4  A sample of a participant achievement https://github.com/a-
radwan/CDGeneratorParticipantWork 



 

84 

             
 
 
  A: Home screen     B: Countries tab with countries list        C: Cities tab with cities list  
 
 
 
 

 

 

 

 

 

 

  

 
 
 
 
 
 
 
 
 

 
 
D: Cities tab searching for cities starts with “Ra”    E: Delete a city action 

 

Figure: 6-2: Screenshots of a participant app. 



 

85 

6.6 Comparison with existing framework 

This section presents a comparison with the implemented approach and the existing 

libraries and frameworks, based on gathered Literature review which was presented 

in Section 2.3.4. The presented existing approaches for iOS development data 

persistence are SQLite database, and CoreData framework, which will be compared 

here with the implemented tool (CDGenerator). 

 

SQLite is a relational database embedded in the C-library that comes with the iOS 

application.  The key strength of SQLite is that it is a lightweight component that is 

suitable for mobile limited resources, with embedded SQL engine with most of its 

functionalities, it's fast and very reliable. But with SQLite, developers need to handle 

database management and operations such as creating databases, creating tables, 

writing CRUD operations and queries, and database files management and indexing. 

Therefore, there is an amount of code to be written and amount of work to be done, 

which makes it a tedious and exhausting task for developers. 

 

Core Data framework comes to ease local data persistence in iOS apps. It is a native 

object graph and data persistence framework integrated with iOS and MacOS 

operating systems. With Core Data framework developers can represent the database 

entities and relationships between them using a high level of abstraction 

representation. Developers also can generate data models class and control them 

automatically. With this high level abstraction representation Core Data can 

communicate directly with SQLite database, and encapsulates the SQLite integration 

and insulates the developer from them.  Therefore, Core Data has eased the data 

persistence for developers while developing iOS applications.  

 

But with Core Data there are still tedious tasks to be done and code to be written. 

Developers need to manage core data graph models, model context, and persistence 

coordinator. Developers also need to write code to fetch data, and control data 

records, moreover developers might produce mistakes and failures while managing 

context threading, or while using KVC for data queries.  In addition, developers need 



 

86 

to take time to learn the fundamentals of the framework including rules, ins and outs. 

And missing these fundamentals leads to unexpected hard to detect mistakes. 

 

CDGenerator completely separates developers from data persistence coding and 

tedious tasks. CDGenerator generates core data components for iOS applications 

based on data schema specified with the Core Data schema editor. With CDGenerator 

most coding tasks needed to be done with Core Data are generated automatically, 

including models, model mapping, object context management, files management, 

shared API’s managers, and basic data operations queries (CRUD operations). 

Moreover, CDGenerator provides a way for developers to create a custom data fetch 

query by specifying its details with Visual and Textual notations from a simple GUI. 

Therefore, CDGenerator allows developers to use Core Data framework to cache and 

save their apps’ local data without a need to write a single line code except method 

calling, or a need to waste time learning its Core Data framework fundamentals. 

 

6.7 Comparison with Related work 

This section discusses a comparison between this thesis and the most related studies 

that were discussed in the Related Work section. Mainly it compares RAPPT [2], 

ASQLC [31] and Fischer, M. et al. solution [57], in terms of problem, solution 

approach and evaluation. 

 

First, these studies come to ease the development process and help developers finish 

their tasks rapidly and effectively by automatically generating code using model 

based approaches. For example, RAPPT designed to help Android developers to 

generate the code for Android Applications based on a model specified using visual 

and textual notations DSVL & DSTL. While Fischer, M. et al.  provide a solution 

that aims to help generate REST APIs based on an already existing meta model, this 

contribution comes to solve the problem of developers’ mistakes that violate the 

REST development constraints. Also, ASQLC comes to help novice Android 



 

87 

developers to generate their Android SQLite database component automatically from 

XML data schema which automatically based on visual representation.  

 

This thesis meets these studies in terms of problem and objectives, it focuses on 

helping developers finish their tasks rapidly by automatically generating code. It also 

focused on solving the problem of developers’ mistakes related to development 

characteristics and constraints as Fischer, M. et al did., but this thesis focused mainly 

on the data persistence components code for iOS application, as well as generating 

custom data fetch queries. 

  

In terms of solution this thesis followed the RAPPT solution approach, by applying 

DSVL and DSTL modeling language to specify characteristics about the code that 

needs to be generated. RAPPT used them to generate Android app code, while in this 

thesis it is used in generating data persistence components for iOS apps. This thesis’s 

solution approach also used MTM transformation followed by MTC transformation 

based on an already existing data scheme, which meets Fischer, M. et al solution 

approach who also transform the already existing data schema meta-model using 

MTM and MTC to generate REST APIs. On the other hand, this thesis’s approach is 

different in generating the data persistence components for iOS application, these 

components including all related code for iOS app data persistence not only the data 

queries APIs, and it different by merging the RAPPT solutions by involving the 

DSVL and DSTL on this code generations approach. 

 

Finally, Both RAPPT and ASQLC have been evaluated using a user experiment, as 

well as this thesis’s solution approach (CDGenerator). All of them have achieved 

highly user acceptance, which also comes to support the effectiveness of applying 

model based techniques on easing, and accelerating the development process and 

helping finish their tasks easily and rapidly. 

 



 

88 

6.8  Threats to validity 

The presented tool was evaluated using a case study and a user evaluation 

questionnaire conducted on a group of 6 participants. The case study provided many 

metrics about the implemented approach including developer experience needed to 

use, time to use and ease of learning, moreover the user evaluation provides a clear 

user acceptance of the presented and implemented approach in helping developers 

persisting their data locally while developing iOS applications. To provide more 

reliable results, an experiment with a large group of participants should be 

conducted, to cover a wider range of developers' experiences and backgrounds, 

which will avoid selection bias and reduce any possible threat to internal and 

external validity.   



 

89 

Chapter 7 Conclusion and Future Work 

7.1 Conclusion 

 

This thesis presents a new fully automation code generation approach that aims to 

help iOS developers to persist their iOS application data locally, using a model based 

software development approach. The solution approach is employing a model based 

techniques that automatically generate the data persistence components for iOS 

application as well as data fetch queries, based on existing data schema. This 

approach applies model based techniques using model to model transformation 

followed by model to code transformation, to automatically generate iOS app’s data 

persistence components. It also leverages the Domain Specific Visual Language 

(DSVL) and Domain Specific Textual Language (DSTL) to automatically generate 

the data fetch queries for iOS applications. 

 

The critical review of background and related work was presented. It concluded that 

there is no such complete solution available that helps developers to automatically 

generate data persistent components and data queries’ APIs, so the focus was on this 

point. 

 

In order to measure the effectiveness, efficiency and the user acceptance of the 

presented approach a proof of concept tool was implemented called CDGenerator. It 

was implemented as an OSX application that runs on mac devices.  

 

The tool has been evaluated using a case study and a user evaluation study conducted 

on a group of 6 developers from different levels of experiences who used the 

CDGenerator to automatically generate core data components for a sample iOS app 

that was prepared for this study. Then they automatically generate data fetch queries 

by specifying their details using the designed Domain Specific Visual Language 

(DSVL) and Domain Specific Textual Language (DSTL). The results were analyzed 



 

90 

and discussed in Chapter 6 which provided many metrics including developer 

experience needed to use the tool, time to use, ease of learning, and the common user 

mistakes. Also, the user evaluation study has demonstrated the developers’ 

acceptance of the implemented approach. 

7.2 Future work  

In future, the intent is to improve the implemented approach tool support, by adding 

the ability to automatically generate more complex data fetch queries, as well as 

improve UI to provide higher usability and add more features to the implemented 

tool. In addition, the author suggests evaluating the approach using an experiment on 

a larger group of participants to provide more reliable results. 

 



 

91 

References 

 

1. Thu, E. E., & Nwe, N. (2017). Model driven development of mobile applications 

using drools knowledge-based rule. 2017 IEEE 15th International Conference on 

Software Engineering Research, Management and Applications (SERA). 

doi:10.1109/sera.2017.7965726. 

 

2.  Barnett, S., Avazpour, I., Vasa, R., & Grundy, J. (2019). Supporting multi-view 

development for mobile applications. Journal of Computer Languages, 51, 88–96. 

doi:10.1016/j.cola.2019.02.001  

 

3 Vaupel, S., Taentzer, G., Gerlach, R., & Guckert, M. (2016). Model-driven 

development of mobile applications for Android and iOS supporting role-based app 

variability. Software & Systems Modeling, 17(1), 35–63. doi:10.1007/s10270-016-

0559-4  

 

4 Vaupel, S., Taentzer, G., Harries, J. P., Stroh, R., Gerlach, R., & Guckert, M. (2014, 

September). Model-driven development of mobile applications allowing role-driven 

variants. In International Conference on Model Driven Engineering Languages and 

Systems (pp. 1-17). Springer, Cham. 

 

5  Vaupel, S., Strüber, D., Rieger, F., Taentzer, G.: Agile bottom-up development of 

domain-specific IDEs for model-driven development. In: Proceedings of FlexMDE 

2015: Workshop on Flexible Model-Driven Engineering, pp. 12–21, vol. 1470, 

CEUR-WS.org (2015) 

 

6 Da Silva, A. R.,  (2015). Model-driven engineering: A survey supported by the 

unified conceptual model. Computer Languages, Systems & Structures, 43, 139–155. 

doi:10.1016/j.cl.2015.06.001  

 



 

92 

7  Su, T., Meng, G., Chen, Y., Wu, K., Yang, W., Yao, Y., Pu, G., Liu, Y. and Su, Z., 

2017, August. Guided, stochastic model-based GUI testing of Android apps. In 

Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering 

(pp. 245-256).  

 

8  Amalfitano, D., Fasolino, A. R., Tramontana, P., Ta, B. D., & Memon, A. M. (2015). 

MobiGUITAR: Automated Model-Based Testing of Mobile Apps. IEEE Software, 

32(5), 53–59. doi:10.1109/ms.2014.55  

 

9 Baek, Y.-M., & Bae, D.-H. (2016). Automated model-based Android GUI testing 

using multi-level GUI comparison criteria. Proceedings of the 31st IEEE/ACM 

International Conference on Automated Software Engineering - ASE 2016. 

doi:10.1145/2970276.2970313  

 

10 Pinto, M., Gonçalves, M., Masci, P., & Campos, J. C. (2017). TOM: A Model-Based 

GUI Testing Framework. Lecture Notes in Computer Science, 155–161. 

doi:10.1007/978-3-319-68034-7_9  

 

11 Salihu, I. A., Ibrahim, R., & Usman, A. (2018, August). A Static-dynamic Approach 

for UI Model Generation for Mobile Applications. In 2018 7th International 

Conference on Reliability, Infocom Technologies and Optimization (Trends and 

Future Directions)(ICRITO) (pp. 96-100). IEEE.  

 

12   Brambilla, M., Umuhoza, E. and Acerbis, R., (2017). Model-driven development of 

user interfaces for IoT systems via domain-specific components and patterns. Journal 

of Internet Services and Applications, 8(1), p.14. 

 

13 Liu, P., Zhang, X., Pistoia, M., Zheng, Y., Marques, M., & Zeng, L. (2017). 

Automatic Text Input Generation for Mobile Testing. 2017 IEEE/ACM 39th 

International Conference on Software Engineering (ICSE). doi:10.1109/icse.2017.65  

 



 

93 

14 Ting Su. 2016. FSMdroid: Guided GUI Testing of Android Apps. In Proceedings of 

the 38th International Conference on Software Engineering, ICSE 2016, Austin, TX, 

USA, May 14-22, 2016 - Companion Volume. 689–691 

 

15 Zhang, H., Wu, H., & Rountev, A. (2016). Automated test generation for detection 

of leaks in Android applications. Proceedings of the 11th International Workshop on 

Automation of Software Test - AST  ’16. doi:10.1145/2896921.2896932 

 

16 Yan, D., Yang, S., & Rountev, A. (2013, November). Systematic testing for resource 

leaks in Android applications. In 2013 IEEE 24th International Symposium on 

Software Reliability Engineering (ISSRE) (pp. 411-420). IEEE. 

 

17 Tirodkar, A.A. and Khandpur, S.S. (2019). EarlGrey: iOS UI Automation Testing 

Framework. 2019 IEEE/ACM 6th International Conference on Mobile Software 

Engineering and Systems (MOBILESoft). 

 

18 Tirodkar, A. A., & Khandpur, S. S. (2019, May). EarlGrey: iOS UI Automation 

Testing Tool. In 2019 IEEE/ACM 6th International Conference on Mobile Software 

Engineering and Systems (MOBILESoft) (pp. 16-19). 

 

19 Google Inc., “EarlGrey.” Github.Io, 2019, google.github.io/EarlGrey/, (June, 2020) 

 

20 Bernaschina, C., Comai, S., & Fraternali, P. (2017, May). Online model editing, 

simulation and code generation for web and mobile applications. In Proceedings of 

the 9th International Workshop on Modelling in Software Engineering (pp. 33-39). 

IEEE Press. 

21 Bernaschina, C., Comai, S., & Fraternali, P. (2017). IFMLEdit.org: Model Driven 

Rapid Prototyping of Mobile Apps. 2017 IEEE/ACM 4th International Conference 

on Mobile Software Engineering and Systems (MOBILESoft). 

doi:10.1109/mobilesoft.2017.15  

 



 

94 

22 Bernaschina, C., Comai, S., & Fraternali, P. (2017). IFMLEdit. org: a Web Tool for 

Model Based Rapid Prototyping of Web and Mobile Applications. Proc. MISE, Tool 

Demo, Buenos Aires, Argentina. 

 

 23 J. Clement, “Number of available applications in the Google Play Store from 

December 2009 to June 2020”, available from: 

https://www.statista.com/statistics/266210/number-of-available-applications-in-the-

google-play-store/ , (June, 2020). 

 

24 Benouda, H., Azizi, M., Esbai, R., & Moussaoui, M. (2016). MDA Approach to 

Automate Code Generation for Mobile Applications. Mobile and Wireless 

Technologies 2016, 241–250. doi:10.1007/978-981-10-1409-3_27  

 

25 Axway Inc., “Appcelerator platform”, http://www.appcelerator.com/, (June, 2020) 

 

26 IBM, “MobileFirst platform foundation”, 

https://www.ibm.com/support/knowledgecenter/SSNJXP/welcome.html, (June, 

2020). 

 

27 “Adobe Phonegap”, http://phonegap.com, (June, 2020))   

 

28 Akbulut, A., Catal, C., Karadeniz, E., & Turgut, E. (2019). Native Code Generation 

as a Service. International Journal of Software Engineering and Knowledge 

Engineering, 29(02), 263-284. 

 

29 Dalmasso, I., Datta, S. K., Bonnet, C., & Nikaein, N. (2013, July). Survey, 

comparison and evaluation of cross platform mobile application development tools. 

In 2013 9th International Wireless Communications and Mobile Computing 

Conference (IWCMC) (pp. 323-328). IEEE. 

 



 

95 

30 Heitkötter, H., Kuchen, H., & Majchrzak, T. A. (2015). Extending a model-driven 

cross-platform development approach for business apps. Science of Computer 

Programming, 97, 31-36. 

 

31 Musleh, I., Zain, S., Nawahdah, M., & Salleh, N. (2018, September). Automatic 

Generation of Android SQLite Database Components. In SoMeT (pp. 3-16). 

 

32 Apple Inc., UserDefaults, available at: 

https://developer.apple.com/documentation/foundation/userdefaults, (June, 2020) 

 

33 Chan, H.,  NSUserDefaults Vs CoreData, available at: 

https://medium.com/@chan.henryk/nsuserdefaults-vs-coredata-aa70d3c23b30, 

(June, 2020). 

34 Apple Inc., Core Data, available at:  

https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/Core

Data/, (June, 2020) 

 

35  Builder X, available at:   https://builderx.io/ (June, 2020). 

 

36  Riera, R., Caching anything in iOS, (Dec 2019). available at: 

https://medium.com/ios-os-x-development/caching-anything-in-ios-102176e46eba., 

(June, 2020). 

 

37 Cacher library by Riera, R., available at: https://github.com/raulriera/Cacher, (June, 

2020). 

 

38 Apple Inc., “Core Data” available at: 

https://developer.apple.com/documentation/coredata,  (June, 2020). 

39 Apple Inc., “Core Data Model” available at: 

https://developer.apple.com/documentation/coredata/core_data_model, (June, 

2020). 



 

96 

40 Apple Inc., “NSManagedObjectModel” available at: 

https://developer.apple.com/documentation/coredata/nsmanagedobjectmodel, (June, 

2020).  

41 Apple Inc., “Core Data Stack”,  available at: 

https://developer.apple.com/documentation/coredata/core_data_stack,  (June, 2020). 

42 Theodoropoulos, G., “How to Use SQLite to Manage Data in iOS Apps” , available 

at: https://www.appcoda.com/sqlite-database-ios-app-t utorial/, (June, 2020). 

 

43 SQLite, “What Is SQLite” available at: https://www.sqlite.org/index.html, (June, 

2020). 

 

44 Bi, C., Research and application of SQLite embedded database technology. WSEAS 

Transactions on Computers, 2009. 1(8): p. 83-92. 

 

45 Owens, M. (2006). The definitive guide to SQLite. Apress. 

 

46 “iOS SQLite Database”, available at: https://www.tutlane.com/tutorial/ios/ios-sqlite-

database,  (June, 2020). 

 

47 “Apple iOS Architecture”, available at: https://www.tutorialspoint.com/apple-ios-

architecture, (June, 2020). 

 

48 Apple Inc., “Xcode”, available at: https://developer.apple.com/xcode/, (June, 2020). 

 

49 “The iOS Application Lifecycle”, (2018) available at: 

https://hackernoon.com/application-life-cycle-in-ios-12b6ba6af78b, (June, 2020). 

 

50 Apple Inc., “Managing Your App's Life Cycle”, available at: 

https://developer.apple.com/documentation/uikit/app_and_environment/managing_

your_app_s_life_cycle, (June, 2020). 

 



 

97 

51 Kühne, T. (2006). Matters of (Meta-) Modeling. Software & Systems Modeling, 5(4), 

369–385. doi:10.1007/s10270-006-0017-9  

 

52 Tufail, H., Azam, F., Anwar, M. W., & Qasim, I. (2018). Model-Driven Development 

of Mobile Applications: A Systematic Literature Review. 2018 IEEE 9th Annual 

Information Technology, Electronics and Mobile Communication Conference 

(IEMCON). doi:10.1109/iemcon.2018.8614821  

 

53 Statista, “Forecast number of mobile users worldwide from 2019 to 2023”, available 

at: https://www.statista.com/statistics/218984/number-of-global-mobile-users-since-

2010/, (June, 2020). 

 

 

54 Zein, S., Salleh, N., & Grundy, J. (2017). Static analysis of android apps for lifecycle 

conformance. 2017 8th International Conference on Information Technology (ICIT). 

doi:10.1109/icitech.2017.8079982   

 

55 Statista, “Number of smartphone users worldwide from 2016 to 2021”, available at: 

https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide, 

(June, 2020). 

 

56 De Lay,E, Jacobs, D.: Rules-based Analysis with JBoss Drools : Adding Intelligence 

to Automation, ICALEPCS 2011 – Proceeding of ICALEPCS, Genoble, France. 

 

57 Fischer, M. (2015). Model-driven code generation for REST APIs (Master's thesis). 

 

58  Utting, M., & Legeard, B. (2010). Practical model-based testing: a tools approach. 

Elsevier. 

 



 

98 

59  Nguyen, B.N., Robbins, B., Banerjee, I. and Memon, A., 2014. GUITAR: an 

innovative tool for automated testing of GUI-driven software. Automated software 

engineering, 21(1), pp.65-105.. 

 

60 Apple inc., ‘About Developing for Mac’,  available at: 

https://developer.apple.com/library/archive/documentation/MacOSX/Conceptual/O

SX_Technology_Overview/About/About.html,  (June, 2020) 

 

61 Jacobs, B.., ‘Three Common Core Data Mistakes to Avoid’,  (2017), available at: 

https://cocoacasts.com/three-common-core-data-mistakes-to-avoid,  (June, 2020) 

 

62 ‘KVO & KVC In swift’,  (2018), available at: https://hackernoon.com/kvo-kvc-in-

swift-12f77300c387,  (June, 2020) 

 

63 Apple Inc., Fetching Objects,  available at: 

https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/Core

Data/FetchingObjects.html#//apple_ref/doc/uid/TP40001075-CH6-SW1,  (June, 

2020) 

 

64 Zein, S., Salleh, N., & Grundy, J. (2016). A systematic mapping study of mobile 

application testing techniques. Journal of Systems and Software, 117, 334–356. 

doi:10.1016/j.jss.2016.03.065  

 

65 Eachscape, available at:  https://eachscape.com, (June, 2020). 

 

66  Statista, “Number of apps available in leading app stores as of 1st quarter 2020”, 

available at: https://www.statista.com/statistics/276623/number-of-apps-available-

in-leading-app-stores/, (June, 2020) 

 

 

 



 

99 

Appendix A: Questionnaire 

PART 1: Participants background 

 
1. What is your level of experience in the development field? 
○ Less than 6 months. 
○ More than or equal 6 months and less than 2 years. 
○ More than or equal 2 years and less than 5 years. 
○ More than 5 years to less than 10 years. 
○ More than 10 years. 

 
 

2. What is your experience background? 
○ Mobile 
○ Backend 
○ Web Front-end 
○ Others 

 
3. What is your level of experience in the iOS development field? 
○ Less than 6 months. 
○ More than or equal 6 months and less than 2 years. 
○ More than or equal 2 years and less than 5 years. 
○ More than 5 years to less than 10 years. 
○ More than 10 years. 

 
 

4. What is your iOS  language experience? 
○ Swift 
○ Objective C 
○ Both 

 
5. Number of iOS apps you worked on. 
○ 0 
○ 1 
○ 2-3 
○ 4-5 
○ more than 5 

 
6. Average size for these projects 



 

100 

○ Less than 1 year. 
○ More than or equal 1 year and less than 2 years. 
○ More than or equal 2 years and less than 5 years. 
○ More than 10 years. 

 
7. Did you need to store local data for any of these apps? 
○ Yes 
○ No 

 
8. Did you use the Core data framework to store data for one of these apps? 
○ Yes 
○  No 

 
9. Do you have experience working with the Core data framework? 
○ Yes 
○ No 

 
10. Have you ever used a code generation tool? 
○ YES 
○ NO. 
11. If yes, what is it? 

  _______________________________ 
 
 

  



 

101 

PART 2: Tool evaluation  

 
12.  Did you face any problem while using this tool? 
○ YES 
○ NO 

 
13.  If your answer is Yes, what are the problems? _

 ________________________________________ 
 
 

14. How do you rate the usability level of this tool? 
○ Very easy to use 
○ Easy 
○ Normal 
○ Difficult 
○ Very Difficult 

 
15. Did you face any problem understanding how the tool works? 
○ YES 
○ NO 

 
16. Did you have any problems understanding the generated code? 
○ YES 
○ No 

 
17. How do you rate the generated code complexity of this tool? 
○ Very complex 
○ Complex 
○ Normal 
○ Simple 
○ Very Simple 

 
18. How do you rate the generated code quality of this tool? 
○ Very good 
○ Good 
○ Normal 
○ Bad 
○ Very bad 

 
19. Will you prefer to type data query manually or with this tool, next time? 



 

102 

○ Manually  
○ Using this tool 

 
20. If you used a core data framework before, How did you find this tool? 
○ Simpler 
○ No advantage 
○ More complex and time wasting 

 
21. Will you prefer using this tool again? 
○ Yes 
○ No 

 
22. If not, why? 
_________________________________________ 

 
  



 

103 

Appendix B: Generated code for sample project using 

CDGenerator 

1. CityModel class code 

//  CityModel 
//  CDGenerator 
// 
//  Created by CDGenerator on 05/21/2020. 
//  Copyright © 2020 CDGenerator. All rights reserved. 
// 
 
import UIKit 
import CoreData 
 
class CityModel: NSObject { 
 
 var area: Float? 
 var id: String? 
 var isCapital: Bool? 
 var name: String? 
 var population: Int? 
 var country: CountryModel? 
 
    override init() { 
    } 
 
 init(managedObject: NSManagedObject) { 
 
  self.area = (managedObject.value(forKey: "area") as? Float) 
  self.id = (managedObject.value(forKey: "id") as? String) 
  self.isCapital = (managedObject.value(forKey: "isCapital") as? Bool) 
  self.name = (managedObject.value(forKey: "name") as? String) 
  self.population = (managedObject.value(forKey: "population") as? Int) 
 
 } 
 func save() { 
 
  if !Thread.current.isMainThread { 



 

104 

   DispatchQueue.main.async { 
    self.save() 
   } 
   return 
  } 
  CDQueriesManager.shared.save(city: self) 
 } 
 
 func delete() { 
 
  if !Thread.current.isMainThread { 
   DispatchQueue.main.async { 
    self.delete() 
   } 
   return 
  } 
  CDQueriesManager.shared.delete(city: self) 
 } 
 
    //MARK:- Model Identity 
    var identityPredicate: NSPredicate { 
        //TODO: Update identity predicate 
    return NSPredicate.init(format: CityModel.identityKey + " = %@", self.identityValue) 
 
    } 
    static var identityKey: String { 
        //TODO: If your model identity key is not 'id', you need to change update it from here 
        return "id"; 
    } 
    var identityValue: String { 
        //TODO: If your model identity key is not 'id', you need to change update it from here 
        return self.id!; 
    } 
 
} 
 
 



 

105 

2.  CountryModel Class Code 

//  CountryModel 
//  CDGenerator 
// 
//  Created by CDGenerator on 05/21/2020. 
//  Copyright © 2020 CD Generator. All rights reserved. 
// 
 
import UIKit 
import CoreData 
 
class CountryModel: NSObject { 
 
 var area: Float? 
 var callingCode: String? 
 var code: String? 
 var flag: String? 
 var id: String? 
 var name: String? 
 var population: Int? 
 var cities: [CityModel]? 
 
    override init() { 
     
    } 
 
 init(managedObject: NSManagedObject) { 
 
  self.area = (managedObject.value(forKey: "area") as? Float) 
  self.callingCode = (managedObject.value(forKey: "callingCode") as? 
String) 
  self.code = (managedObject.value(forKey: "code") as? String) 
  self.flag = (managedObject.value(forKey: "flag") as? String) 
  self.id = (managedObject.value(forKey: "id") as? String) 
  self.name = (managedObject.value(forKey: "name") as? String) 
  self.population = (managedObject.value(forKey: "population") as? Int) 
 } 
 
 func save() { 
 



 

106 

  CDQueriesManager.shared.save(country: self) 
 } 
 
 func delete() { 
 
  CDQueriesManager.shared.delete(country: self) 
 } 
 
    //MARK:- Model Identity 
    var identityPredicate: NSPredicate { 
        //TODO: Update identity predicate 
    return NSPredicate.init(format: CountryModel.identityKey + " = %@", 
self.identityValue) 
 
    } 
    static var identityKey: String { 
        //TODO: If your model identity key is not 'id', you need to change update it from here 
        return "id"; 
    } 
    var identityValue: String { 
        //TODO: If your model identity key is not 'id', you need to change update it from here 
        return self.id!; 
    } 
} 
  



 

107 

3. CoreDataManager file code 

//  CoreDataManager 
//  CDGenerator 
// 
//  Created by CDGenerator on 05/21/2020. 
//  Copyright © 2020 CDGenerator. All rights reserved. 
// 
 
 
import UIKit 
import CoreData 
 
let kModuleName = "Sample" 
 
class CoreDataManager: NSObject { 
     
    var saveOperationQueue = OperationQueue(); 
     
    static let shared = CoreDataManager(); 
     
    private override init() { 
        super.init(); 
        self.saveOperationQueue.maxConcurrentOperationCount = 1; 
    } 
 
    lazy var managedObjectContext: NSManagedObjectContext = { 
         
        let coordinator = CoreDataManager.shared.persistentStoreCoordinator 
        var managedObjectContext = NSManagedObjectContext(concurrencyType: 
.mainQueueConcurrencyType) 
        managedObjectContext.persistentStoreCoordinator = coordinator 
        return managedObjectContext 
    }() 
     
    lazy var managedObjectModel: NSManagedObjectModel = { 
        let modelURL = Bundle.main.url(forResource: kModuleName, withExtension: 
"momd")! 
        return NSManagedObjectModel(contentsOf: modelURL)! 
        }() 
     



 

108 

    lazy var persistentStoreCoordinator: NSPersistentStoreCoordinator? = { 
        // Create the coordinator and store 
        var coordinator: NSPersistentStoreCoordinator? = 
NSPersistentStoreCoordinator(managedObjectModel: self.managedObjectModel) 
         
        let directory = self.applicationDocumentsDirectory 
         
        let url = directory.appendingPathComponent(String(format: 
"%@.sqlite",kModuleName)) 
         
        let options = [ NSMigratePersistentStoresAutomaticallyOption : true, 
                        NSInferMappingModelAutomaticallyOption : true ] 
         
         
        do { 
            try coordinator!.addPersistentStore(ofType: NSSQLiteStoreType, 
configurationName: nil, at: url, options: options) 
        } catch var error as NSError { 
            coordinator = nil 
            NSLog("Unresolved error \(error), \(error.userInfo)") 
            abort() 
        } catch { 
            fatalError() 
        } 
        return coordinator 
    }() 
     
    lazy var applicationDocumentsDirectory: URL = { 
         
        //TEMP: Add App group identifier 
        //return FileManager.default.containerURL(forSecurityApplicationGroupIdentifier: 
"your.app.group.dentifier")! 
 
        let paths = FileManager.default.urls(for: .documentDirectory, in: .userDomainMask) 
        let documentsDirectory = paths[0] 
        return documentsDirectory 
 
        }() 
 
     



 

109 

    func saveContext () { 
        let context = self.managedObjectContext 
        if context.hasChanges { 
            do { 
                try context.save() 
            } catch { 
                let nserror = error as NSError 
                print("Unresolved error %@, %@", error, nserror.userInfo); 
                fatalError("Unresolved error \(nserror), \(nserror.userInfo)") 
            } 
        } 
    } 
     
    func fetchRequestForEntity(entityName: String, predicate: NSPredicate?, 
sortDescriptors: [NSSortDescriptor]? = nil) -> [Any]? { 
        let request = NSFetchRequest<NSFetchRequestResult>(entityName: entityName) 
        if predicate  != nil { 
            request.predicate = predicate; 
        } 
        request.sortDescriptors = sortDescriptors; 
        do { 
            return try managedObjectContext.fetch(request) 
        } catch let error as NSError { 
            print(error) 
            return nil; 
        } 
    } 
 
    func deleteContentsOfEntity(entityName: String) { 
        let request = NSFetchRequest<NSFetchRequestResult>(entityName: entityName) 
        let deleteRequest = NSBatchDeleteRequest.init(fetchRequest: request); 
         
        do { 
             try managedObjectContext.execute(deleteRequest) 
        } catch let error as NSError { 
            print(error) 
        } 
    } 
     
}  



 

110 

 

4. CDQueryManager file code 

//  CDQueriesManager 
//  CDGenerator 
// 
//  Created by CDGenerator on 05/21/2020. 
//  Copyright © 2020 CDGenerator. All rights reserved. 
// 
 
 
import UIKit 
import CoreData 
 
class CDQueriesManager: NSObject { 
     
    static let shared = CDQueriesManager(); 
     
    private override init() { 
        super.init(); 
    } 
     
     
    //MARK:- City APIs 
     
    func save(city: CityModel) { 
         
        let context = CoreDataManager.shared.managedObjectContext 
        let predicate = city.identityPredicate 
        let fetchResults = CoreDataManager.shared.fetchRequestForEntity(entityName: 
"City", predicate: predicate) 
        var object: NSManagedObject 
        if(fetchResults !=  nil && fetchResults!.count > 0) { 
            object = fetchResults?.first as! NSManagedObject 
        } else { 
            object = NSEntityDescription.insertNewObject(forEntityName: "City", into: 
context) 
        } 
         



 

111 

        object.setValue(city.area, forKey: "area") 
        object.setValue(city.id, forKey: "id") 
        object.setValue(city.isCapital, forKey: "isCapital") 
        object.setValue(city.name, forKey: "name") 
        object.setValue(city.population, forKey: "population") 
         
        CoreDataManager.shared.saveContext() 
    } 
     
    func queryCityList() -> [CityModel] { 
        let fetchResults = CoreDataManager.shared.fetchRequestForEntity(entityName: 
"City", predicate: nil); 
        var list = [CityModel](); 
        for object in fetchResults! { 
            let model = CityModel.init(managedObject: object as! NSManagedObject); 
            list.append(model); 
        } 
        return list; 
    } 
     
     
    func queryCity(id: String) -> CityModel? { 
        let predicate = NSPredicate.init(format: CityModel.identityKey + " = %@", id) 
         
        let fetchResults = CoreDataManager.shared.fetchRequestForEntity(entityName: 
"City", predicate: predicate); 
        if fetchResults != nil  && fetchResults!.first != nil { 
            let model = CityModel.init(managedObject: fetchResults?.first as! 
NSManagedObject); 
            return model; 
        } 
        return nil; 
    } 
     
    func delete(city: CityModel) { 
        let context = CoreDataManager.shared.managedObjectContext; 
        let predicate = city.identityPredicate; 
        let fetchResults = CoreDataManager.shared.fetchRequestForEntity(entityName: 
"City", predicate: predicate); 
        if(fetchResults !=  nil && fetchResults!.count > 0) { 



 

112 

            context.delete(fetchResults!.first as! NSManagedObject); 
            CoreDataManager.shared.saveContext(); 
        } 
    } 
     
    //MARK:- Country APIs 
     
    func save(country: CountryModel) { 
         
        let context = CoreDataManager.shared.managedObjectContext 
        let predicate = country.identityPredicate 
        let fetchResults = CoreDataManager.shared.fetchRequestForEntity(entityName: 
"Country", predicate: predicate) 
        var object: NSManagedObject 
        if(fetchResults !=  nil && fetchResults!.count > 0) { 
            object = fetchResults?.first as! NSManagedObject 
        } else { 
            object = NSEntityDescription.insertNewObject(forEntityName: "Country", into: 
context) 
        } 
         
        object.setValue(country.area, forKey: "area") 
        object.setValue(country.callingCode, forKey: "callingCode") 
        object.setValue(country.code, forKey: "code") 
        object.setValue(country.flag, forKey: "flag") 
        object.setValue(country.id, forKey: "id") 
        object.setValue(country.name, forKey: "name") 
        object.setValue(country.population, forKey: "population") 
         
        CoreDataManager.shared.saveContext() 
    } 
     
    func queryCountryList() -> [CountryModel] { 
        let fetchResults = CoreDataManager.shared.fetchRequestForEntity(entityName: 
"Country", predicate: nil); 
        var list = [CountryModel](); 
        for object in fetchResults! { 
            let model = CountryModel.init(managedObject: object as! NSManagedObject); 
            list.append(model); 
        } 



 

113 

        return list; 
    } 
     
     
    func queryCountry(id: String) -> CountryModel? { 
        let predicate = NSPredicate.init(format: CountryModel.identityKey + " = %@", id) 
         
        let fetchResults = CoreDataManager.shared.fetchRequestForEntity(entityName: 
"Country", predicate: predicate); 
        if fetchResults != nil  && fetchResults!.first != nil { 
            let model = CountryModel.init(managedObject: fetchResults?.first as! 
NSManagedObject); 
            return model; 
        } 
        return nil; 
    } 
     
    func delete(country: CountryModel) { 
        let context = CoreDataManager.shared.managedObjectContext; 
        let predicate = country.identityPredicate; 
        let fetchResults = CoreDataManager.shared.fetchRequestForEntity(entityName: 
"Country", predicate: predicate); 
        if(fetchResults !=  nil && fetchResults!.count > 0) { 
            context.delete(fetchResults!.first as! NSManagedObject); 
            CoreDataManager.shared.saveContext(); 
        } 
    } 
     
    func queryCityList(name: String) -> [CityModel]? { 
         
        let predicate =  NSPredicate.init(format: "name BEGINSWITH[c] %@ ", name ) 
        let sortDescriptors = [NSSortDescriptor(key:"name", ascending:true)] 
         
        let fetchResults = CoreDataManager.shared.fetchRequestForEntity(entityName: 
"City", predicate: predicate, sortDescriptors: sortDescriptors) as? [NSManagedObject]; 
         
        if fetchResults != nil { 
            let models = fetchResults!.map { (managedObject) -> CityModel in 
                let model = CityModel.init(managedObject: managedObject); 
                return model 



 

114 

            } 
            return models; 
        } 
        return nil; 
    } 
     
    func queryCountryList(name: String) -> [CountryModel]? { 
         
        let predicate =  NSPredicate.init(format: "name CONTAINS[c] %@ ", name ) 
        let sortDescriptors = [NSSortDescriptor(key:"name", ascending:true)] 
         
        let fetchResults = CoreDataManager.shared.fetchRequestForEntity(entityName: 
"Country", predicate: predicate, sortDescriptors: sortDescriptors) as? 
[NSManagedObject]; 
         
        if fetchResults != nil { 
            let models = fetchResults!.map { (managedObject) -> CountryModel in 
                let model = CountryModel.init(managedObject: managedObject); 
                return model 
            } 
            return models; 
        } 
        return nil; 
    } 
} 
 
 

 




